Skip to main content

Classical treatments of the L-shell ionization probability at zero impact parameter

  • Classical Collisional Ionization
  • Conference paper
  • First Online:
High-Energy Ion-Atom Collisions

Part of the book series: Lecture Notes in Physics ((LNP,volume 294))

  • 180 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. C. McDowell and J. P. Coleman, Introduction to the Theory of Ion-Atom Collisions (North-Holland, Amsterdam, 1970). See Chapter 3.

    Google Scholar 

  2. F. Hopkins, in Methods of Experimental Physics: Atomic Physics-Accelerators (Academic, New York, 1980) edited by P. Richard, Vol. 17, p.335. See in particular Ch. 8.3 and references therein.

    Google Scholar 

  3. R. L. Kauffman, J. H. McGuire, P. Richard, and C.F. Moore, Phys. Rev. A 8, 1233 (1973). The projectile-target combinations, for which the PL(0) data are analyzed in our work, are identified by the atomic numbers Z1 and Z2 and listed using [Z1:Z2] format. In this particular reference, they were [1:20,21,22,23,24,25; 2:20,21,22,23,24,25; 8:20,21,22,24,25; 9:10].

    Google Scholar 

  4. T. K. Li, R. L. Watson, and J. S. Hansen, Phys. Rev. A 8, 1258 (1973); T. K. Li, Ph.D. Thesis, Texas A & M University, unpublished, (1973), [1:20,22,26; 2:20,22,26; 6:22]. Note that the Z1 = 1 projectiles of this reference were deuterons.

    Google Scholar 

  5. P. Richard, R. L. Kauffman, J. H. McGuire, C. F. Moore, and D. K. Olsen, Phys. Rev. A 8, 1369 (1973), [2:13].

    Google Scholar 

  6. R. L. Kauffman, D. Hopkins, C. W. Woods, and P. Richard, Phys. Rev. Lett. 31, 621 (1973), [8:10; 9:10,13].

    Google Scholar 

  7. B. Hodge, R. Kauffman, C. F. Moore, and P. Richard, J. Phys. B 6, 2468 (1973), [1:21,22; 2:21].

    Google Scholar 

  8. F. Hopkins, D. O. Elliott, C. P. Bhalla, and P. Richard, Phys. Rev. A 8, 2952 (1973), [8:13; 9:13].

    Google Scholar 

  9. D. L. Matthews, B. M. Johnson, L. E. Smith, J. J. Mackey, and C. F. Moore, Phys. Lett. 48A, 93 (1974), [1:10; 8:10].

    Google Scholar 

  10. D. L. Matthews, B. M. Johnson, and C. F. Moore, Phys. Rev. A 10, 451 (1974), [8:10].

    Google Scholar 

  11. R. L. Kauffman, C. W. Woods, K. A. Jamison, and P. Richard, J. Phys. B 7, L335 (1974), [6:10; 7:10].

    Google Scholar 

  12. R. L. Watson, F. E. Jenson, and T. Chiao, Phys. Rev. A 10, 1230 (1974), [1:13; 2:19; 6:17; 8:19;10:13,17,19; 16:17,19; 17:18; 18:19].

    Google Scholar 

  13. R. L. Kauffman, C. Woods, K. A. Jamison, and P. Richard, Phys. Rev. A 11, 872 (1975) [6:10; 7:10; 8:10].

    Google Scholar 

  14. V. Dutkiewicz, H. Bakhru, and N. Cue, Phys. Rev. A 13, 306 (1976), [1:13,14,15,16,17,18,20,21,22,23,24,25].

    Google Scholar 

  15. K. W. Hill, B. L. Doyle, S. M. Shafroth, D. H. Madison, and R. D. Deslattes, Phys. Rev. A 13, 1334 (1976), [2:22;3:22;6:22;8:22].

    Google Scholar 

  16. C. Schmiedekamp, B. L. Doyle, T. J. Gray, K. A. Jamison, and P. Richard, Phys. Rev. A 18, 1892 (1978), [1:18; 6:18,19; 7:18; 8:18; 9:18; 14:18; 17:18].

    Google Scholar 

  17. R. L. Watson, B. I. Sonobe, J. A. Damarest, and A. Langenberg, Phys. Rev. A 19, 1529 (1979), [2:13,14,17,18,22; 6:13,14; 8:13,14; 10:13,14].

    Google Scholar 

  18. R. L. Watson, O. Benka, K. Parthasaradhi, R. J. Maurer, and J. M. Sanders, J. Phys. B 16, 835 (1983), [2:10;6:10].

    Google Scholar 

  19. I. Kádár, S. Ricz, V. A. Shchegolev, B. Sulik, D. Varga, J. Végh, D. Berényi, and G. Hock, J. Phys. B 18, 275 (1985), [10:10].

    Google Scholar 

  20. J. H. McGuire and P. Richard, Phys. Rev. A 8, 1374 (1973).

    Google Scholar 

  21. N. Bohr, K. Dansk. Vidensk. Selsk. Mat.-Fys. Medd. 18, 8 (1948).

    Google Scholar 

  22. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd Edition (Clarendon, Oxford, 1965). See Chapters II.6 and XII.1.

    Google Scholar 

  23. J. M. Hansteen, O. M. Johansen, and L. Kocbach, At. Data and Nucl. Data Tables 15, 305 (1975).

    Google Scholar 

  24. E. Gerjuoy, Phys. Rev. 148, 54 (1966); L. Vriens, Proc. R. Soc. Lond. 90, 935 (1966); J. D. Garcia, E. Gerjuoy, and J. Wekler, Phys. Rev. 165, 66(1968); J. D. Garcia, Phys. Rev. A 1, 280 (1970) and A 4, 955 (1971).

    Google Scholar 

  25. In the evaluation of V = V1/V2Lθ ½2L or V = v1/v2Lθ2L there is a certain ambiguity in choosing a θ2L that represents each L-shell electron on the average. Using θL1, θL2, and θL3 from the Z2 = 10–25 range, we have searched for an optimal definition of θ2L that would make PL(0,θ2L) equal to [ P2s(0, θL1) + P2p (0, θL2) + 2 P2p (0, θL3) ] / 4 as closely as possible. We have found — comparing P2s(0) and P2p(0) formulas of J. S. Hansen, Phys. Rev. A 8, 822 (1973) vis-a-vis PL(0) of Ref. 24 — θ2L = (θL1θL2θL3θL3)¼ to be the optimal choice.

    Google Scholar 

  26. J. J. Thomson, Phil. Mag. 23, 449 (1912).

    Google Scholar 

  27. G. Lapicki, R. Mehta, J. L. Duggan, P. M. Kocur, J. L. Price, and F. D. McDaniel, Phys. Rev. A 34, 3813 (1986).

    Google Scholar 

  28. M. Gryziński, Phys. Rev. 138, A304 (1965).

    Google Scholar 

  29. M. Gryziński, Phys. Rev. 138, A322 (1965).

    Google Scholar 

  30. M. Gryziński, Phys. Rev. 138, A138 (1965).

    Google Scholar 

  31. B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929); V. Fock, Z. Phys. 98, 145 (1935).

    Google Scholar 

  32. L. P. Pitaevskii, Sov. Phys.-JETP 15, 919 (1962); R. A. Mapleton, Proc. Rey. Soc. 89, 23 (1966).See also Appendix 3.1 of Ref. 1.

    Google Scholar 

  33. V. M. Dubner and N. V. Komarovskaya, in Abstracts of the Vth International Conference on the Physics of Electronic and Atomic Collisions, Leningrad, 1967 edited by I. P. Flaks and V. S. Solovyov (Nauka, Leningrad, 1967), p. 659; A. Burgess and I. C. Percival, in Advances in Atomic and Molecular Physics, edited by D. R. Bates and I. Estermann (Academic, New York, 1968), Vol. 4, p.109.

    Google Scholar 

  34. R. L. Becker, A. L. Ford, J. F. Reading, Nucl. Instr. Meth. 214, 49 (1983).

    Google Scholar 

  35. J. S. Cohen, J. Phys. B 18, 1759 (1985).

    Google Scholar 

  36. M. Gryziński and J. A. Kunc, J. Phys. B 19, 2479 (1986).

    Google Scholar 

  37. M. Gryziński, J. Physique 43, L425 (1982).

    Google Scholar 

  38. W. Brandt and G. Lapicki, Phys. Rev. A 20, 465 (1979). See Eq. (20).

    Google Scholar 

  39. R. Abrines and I. C. Percival, Proc. Phys. Soc. 88, 861 and 873 (1966); R. Abrines, I. C. Percival and N. A. Valentine, Proc. Phys. Soc. 89, 515.

    Google Scholar 

  40. M. Gryzinski, J. A. Kunc, and M. Zgorzelski, S. Phys. B 6, 2292 (1973).

    Google Scholar 

  41. R. L. Becker, A. L. Ford, and J. F. Reading, Phys. Rev. A 29, 3111 (1984).

    Google Scholar 

  42. W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981).

    Google Scholar 

  43. W. Brandt, in Atomic Collision in Solids edited by S. Datz, B. R. Appleton, and C. D. Moak (Plenum, New York, 1973) Vol. 1, p. 261.

    Google Scholar 

  44. D. R. Bates and G. W. Griffing, Proc. Phys. Soc. A 68, 90 (1955); W. Losonsky, Phys. Rev. A 16, 1312 (1977); J. S. Briggs and K. Taulbjerg, in Topics in Current Physics, edited by I. A. Sellin (Springer, Berlin, 1978), Vol. 5, p.105; S. T. Manson and L. H. Toburen, Phys. Rev. Lett. 46, 529 (1981); L. H. Toburen, N. Stolterfoht, P. Ziem, and D. Schneider, Phys. Rev. A 24, 1741 (1981)

    Google Scholar 

  45. D. Schneider, M. Prost, B. DuBois, and N. Stolterfoht, Phys. Rev. A 25, 3102 (1982).

    Google Scholar 

  46. B. Sulik, G. Hock, and D. Berényi, J. Phys. 17, 3239 (1984).

    Google Scholar 

  47. L. Vegh, Phys. Rev. A 32, 199 (1985).

    Google Scholar 

  48. Eq.(1a) of Ref.46, b(ΔE) = Z1[(2v 21 − Δ E)/ΔE]½/v 21 , converts to σ = πb2 that is identical with Thomson's cross section of Eq. (8) after evaluation at ΔEmin = v 22L θ2L/2. By the selection of θ2L = 1 (hydrogenic wavefunctions), the authors arrive at the most restrictive scaling of PL(0) i.e., with Z1/V1 only. This scaling is derived for all Z1/v1 because from the outset thcu-off impact parameter bC = (Z1/v1)a2L(1−1/4V2) is approximated in Eq.(lb) by (Z1/v1)a2L; the approximation requires V ≫ 1.

    Google Scholar 

  49. M. Gryziński, Phys. Rev. 107, 1471 (1957).

    Google Scholar 

  50. M. Gryziński, Phys. Rev. 115, 374 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Berényi G. Hock

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Lapicki, G. (1988). Classical treatments of the L-shell ionization probability at zero impact parameter. In: Berényi, D., Hock, G. (eds) High-Energy Ion-Atom Collisions. Lecture Notes in Physics, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18732-4_103

Download citation

  • DOI: https://doi.org/10.1007/3-540-18732-4_103

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18732-5

  • Online ISBN: 978-3-540-48129-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics