Solving interpolation problems with LOGO and BOXER

  • Helmut Schweiker
  • Klaus-Peter Muthig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 282)


The results of the present experiment indicate that BOXER must not be regarded as only a modernized update of LOGO, but as a real improvement over LOGO - at least with respect to the features which have been the subject of the present investigation. Whether this evaluation will hold for all features of the presentation mode in BOXER as well as for other task domains should be investigated in further studies. In addition, performance data should be gathered from online sessions with either LOGO and BOXER in order to evaluate whether and where data from controlled experiments may be generalized. Nevertheless, the present study may be regarded as a first step in that direction as well as BOXER may be regarded as a promising step in providing efficient visual aids in programming.


Data Element Interpolation Problem Presentation Mode Direct Manipulation Response Time Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.R. & Jeffries, R. (1985). Novice LISP errors: undetected losses of information from working memory. Human-Computer Interaction, 1, 107–131.Google Scholar
  2. Baron, R.J. (1985). Visual memories and mental images. International Journal of Man-Machine Studies, 23, 275–311.Google Scholar
  3. Bauer, D.W. & Eddy, J.K. (1986). The representation of command language syntax. Human Factors, 28, 1–10.Google Scholar
  4. Brooks, R.E. (1985). Studying programmer behavior experimentally: the problems of proper methodology. Communications of the ACM, 23, 207–213.Google Scholar
  5. diSessa, A.A. (1985). A principled design for an integrated computational environment. Human-Computer Interaction, 1, 1–47.Google Scholar
  6. diSessa, A.A. (1986a). Notes on the future of programming: breaking the utility barrier. In D.A. Norman & S.W. Draper (Eds.), User-Centered System Design. Hillsdale: Erlbaum (pp. 125–152).Google Scholar
  7. diSessa, A.A. (1986b). Models of computation. In D.A. Norman & S.W. Draper (Eds.), User-Centered System Design. Hillsdale: Erlbaum (pp. 201–218).Google Scholar
  8. diSessa, A.A. & Abelson, H. (1986). BOXER: A reconstructible computational medium. (unpublished manuscript).Google Scholar
  9. Dörner, D. (1976). Problemlösen als Informationsverarbeitung. Stuttgart: Kohlhammer.Google Scholar
  10. Dörner, D. (1985). Einige Anmerkungen zur Rolle propositionaler und analoger Codierung für das Denken. In P. Day, U. Fuhrer & U. Laucken (Eds.), Umwelt und Handeln: Ökologische Anforderungen und Handeln im Alltag. Tübingen: Attempto (pp. 323–333).Google Scholar
  11. DuBoulay, B. & O'Shea, T. (1981). Teaching novices programming. In M.J. Coombs & J.L. Alty (Eds.), Computing Skills and the User Interface. London: Academic Press (pp. 147–200).Google Scholar
  12. Duncker, K. (1935). Zur Psychologie des produktiven Denkens. Berlin: Julius Springer.Google Scholar
  13. Feuerzeig, W., Papert, S., Grand, R. & Solomon, C. (1969). Programming languages as a conceptual framework for teaching mathematics. MIT Report No. 1889. Cambridge: MIT.Google Scholar
  14. Griggs, R.A. & Newstead, S.E. (1982). The role of problem structure in a productive reasoning task. Journal of Experimental Psychology: Learning, Memory and Cognition, 8, 297–307.Google Scholar
  15. Hutchins, E.L., Hollan, J.D., & Norman, D.A. (1986). Direct manipulation interfaces. In D.A. Norman and S.W. Draper (Eds.), User Centered System Design. Hillsdale: Erlbaum (pp. 87–124).Google Scholar
  16. Lay, E., Klotz, L. & Neves, D. (1985). BOXER users manual (Version 8.0). Cambridge: MIT.Google Scholar
  17. Muthig, K.-P. (1983). Externe Speicher: Implikationen für Modellvorstellungen vom menschlichen Gedächtnis. In G. Lüer (Hrsg.), Bericht über den 33. Kongreß der Deutschen Gesellschaft für Psychologie in Mainz 1982. Göttingen: Hogrefe (pp. 252–259).Google Scholar
  18. Muthig, K.-P., & Schönpflug, W. (1981). Externe Speicher und rekonstruktives Verhalten. In W. Michaelis (Ed.), Bericht über den 32. Kongreß der Deutschen Gesellschaft für Psychologie in Zürich 1980. Göttingen: Hogrefe (pp. 225–229).Google Scholar
  19. Myers, B.A. (1986). Visual programming, programming by example and program visualization: a taxonomy. CHI'86 Proceedings, 59–66.Google Scholar
  20. Papert, S. (1980). Mindstorms, children, computers and powerful ideas. New York: Basic Books.Google Scholar
  21. Raeder, G. (1985). A survey of current graphical programming techniques. IEEE Computer, 8, 11–25.Google Scholar
  22. Sheil, B.A. (1981). The psychological study of programming. Computing Surveys, 13, 101–120.Google Scholar
  23. Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages. IEEE Computer, 16, 57–69.Google Scholar
  24. Zloof, M. (1984). Classification of visual programming languages. Proceedings of the 1984 IEEE Workshop on visual languages, Hiroshima. Silver Spring: IEEE Computer Society Press (pp. 232–235).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Helmut Schweiker
    • 1
  • Klaus-Peter Muthig
    • 1
  1. 1.Science Center HeidelbergIBM GermanyGermany

Personalised recommendations