Advertisement

Quasi-particle interaction and anomalies in the excitation spectra of metals

  • H. Eschrig
  • M. I. Kaganov
Invited Talks III. Electron-Phonon Interaction
Part of the Lecture Notes in Physics book series (LNP, volume 285)

Abstract

The low-energy excitation spectrum of a paramagnetic metal in the absence of an external magnetic field consists of phonons filling the whole quasi-momentum space and of electrons in a thin layer around the Fermi surface. The interaction of these quasi-particles results in a renormazization of the energies and in a finite life-time. The renormazization contains a variety of anomalies - divergenecies of the spectra or its derivatives, the group velocities - in which the local geometry of the Fermi surface manifests. The divergencies are cut off due to various damping processes, it is however to be expected that peaks remain some of which being experimentally detected. The phenomena discussed are general, i.e. to be expected present in any metal. The given treatment continues the semi-phenomenological theory of metals developed by 1. M. Lifshits and his school.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. o. Landau, E. M. Lifsmits, and L. P. Pitaevskii, “Statistical Physics” (part II), Pergamon Press, London, 1980.Google Scholar
  2. [2]
    M. I. Kaganov and H. Eschrig, Usp. fiz. nauk, to be published.Google Scholar
  3. [3]
    M. Porn and Kun Huang, “Dynamical Theory of Crystal Lattices”, Clarendon Press, Oxford, 1954.Google Scholar
  4. [4]
    E. A. Kaner and V. G. Skobov, Usp. fiz. nauk 89, 367 (1966).Google Scholar
  5. [5]
    V. Ya. Demikhovskii and A. P. Protanganov, Usp. fiz. nauk 118 101 (1976).Google Scholar
  6. [6]
    P. M. Platzman and P. A. Wolff, “Waves and Interactions in Solid State Plasmas”, Academic Press, New York, 1973.Google Scholar
  7. [7]
    L. D. Landau, Zh. exp.teor. fiz. 16, 574 (1946).Google Scholar
  8. [8]
    V. L. Gurevich, “Kinetika fononikh sistem”, Moscow, Nauka, 1980, chap. 1, §6.Google Scholar
  9. [9]
    E. M. Lifshits and L. P. Pitaevskii, “Physical Kinetics”, Pergamon Press, London, 1981.Google Scholar
  10. [10]
    H. Eschrig in: P ziesche (ed.). Proc. 4th Symp. Electronic Structure, TU Dresden, p.17, 1974.Google Scholar
  11. [11]
    E. G. Brovman and Yu. M. Kagan in: G. K. Norton and A. A. Maradudin (ed.), “Dynamical Properties of Solids”, vol. 1, p. 191, North-Holland, Amsterdam, 1974.Google Scholar
  12. [12]
    E. G. Maksimov, Zh. exp. teor. fiz. 69, 2236 (1975).Google Scholar
  13. [13]
    M. I. Kaganov and Y. Yu. Lisovskava, Zh. exp. teor. fiz. 80, 2445 (1981).Google Scholar
  14. [14]
    A B. Migdal, Zh. exp. teor. fiz. 34, 1438 (1958).Google Scholar
  15. [15]
    M. I. Kaganov, A G. Plyavenek, and M. Hietschold, Zh. exp. teor. fiz. 82, 2030 (1982).Google Scholar
  16. [16]
    M. I. Kaganov and A. G. Plyavenek, Zh. exp. teor. fiz. 88, 249 (1985).Google Scholar
  17. [17]
    A. B. Pippard, Phil. Mag. 2, 1147 (1957).Google Scholar
  18. [18]
    A. Z. Akhieser, M. I. Kaganov, and G. Ya. Lyubarskii, Zh. exp. teor. fiz. 32, 837 (1957)Google Scholar
  19. [19]
    W. Kohn, Phys. Rev. Letters 3, 393 (1959).CrossRefGoogle Scholar
  20. [20]
    A. M. Afanas'ev and Yu. M. Kaman, Zh. exp. teor. fiz. 43, 1436 (1962).Google Scholar
  21. [21]
    M. I. Kaganov and A. I. Semenenko, Zh. exp. teor. fiz. 50, 630 (1966).Google Scholar
  22. [22]
    P. L. Taylor, Phys.Rev. 131, 1995 (1963).CrossRefGoogle Scholar
  23. [23]
    L.Weiss and H. Eschrig, phys. stat. sol. (b) 114, 419 (1982): L. Weiss, H. Eschrig, and M. I. Kaganov in: P. Ziesche (ed.), proc. 13th Symp. Electronic Structure, Tu Dresden, p. 103, 1983.Google Scholar
  24. [24]
    G. T. Afanesyan, M. I. Kaganov, and T. Yu. Lisovskaya, Pisma Zh. exp. teor. fiz. 25, 381 (1977); zh. exp. teor. fiz. 75, 1786 (1978).Google Scholar
  25. [25]
    M. I. Kaganov, V. M. Kontorovich, T. Yu. Lisovskaya, and N. A. Stepanova, Zh. exp. teor. fiz. 85, 1675 (1983).Google Scholar
  26. [26]
    G. E. H. Reuter and E. W. Sondheimer, Proc. Ray. Soc. 195A, 336 (1948); G. I. Ivanovskii and M. I. Kaganov, Zh. exp. teor. fiz. 83, 2320 (1982); v, G. Peshanskii., v. S. Lekhtsier, and A Tada, Fiz. met. met. 56, 855 (1983.).Google Scholar
  27. [27]
    M. I. Kaganov and A. G. Plyavenek, Pisma zh. exp. teor. fiz. 38, 94 (1983).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. Eschrig
    • 1
  • M. I. Kaganov
    • 2
  1. 1.Zentralinstitut fuer Festkoerperphysik und Werkstofforschung der AdW der DDRDresdenGDR
  2. 2.Institute of Physical ProblemsAcademy of sciences of USSRMoscow

Personalised recommendations