Skip to main content

Microwave ionization of highly excited hydrogen atoms: Experiment and theory

  • B. Quantum Chaos
  • Conference paper
  • First Online:
Book cover The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function

Part of the book series: Lecture Notes in Physics ((LNP,volume 278))

Abstract

This article elaborates on a talk delivered by the first author at the First International Conference on the Physics of Phase Space (University of Maryland, 20–23 May 1986). It reviews briefly our still limited, but rapidly growing understanding of a dynamical process, the ionization of highly-excited hydrogen atoms by a microwave electric field. Classical dynamics explains surprisingly well many recent experimental results from Stony Brook, on which the article focusses. Some experimental results not well explained, however, appear to be essentially quantal in origin. These are just now beginning to be understood. New, detailed questions continue to arise as older questions are answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. From a vast literature we suggest A.J. Lichtenberg and M.A. Lieberman, “Regular and Stochastic Motion,” Springer-Verlag, New York (1983); articles by L.P. Kadanoff and by M.C. Gutzwiller in Physics Scripta, Vol. T9 (1985), a special volume on “The Physics of Chaos and Related Problems”; J.R. Ackerhalt, P.W. Milonni, and M.-L. Shih, Phys. Rep. 128:205(1985).

    Book  MATH  Google Scholar 

  2. T. Hogg and B.A. Huberman, Phys. Rev. Lett. 48:711 (1982); Phys. Rev. A28:22(1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. J.E. Bayfield and P.M. Koch, Phys. Rev. Lett. 33:258 (1974); J.E. Bayfield, L.D. Gardner, and P.M. Koch, Phys. Rev. Lett. 39:76 (1977); reviewed in P.M. Koch, J. Phys. (Paris), Colloq. 43:02-187 (1982).

    Article  ADS  Google Scholar 

  4. J.G. Leopold and I.C. Percival, Phys. Rev. Lett. 41:944 (1978) and J. Phys. B12:709 (1979); D.A. Jones, J.G. Leopold, and I.C. Percival, J. Phys. B13:31 (1980); B.I. Meerson, E.A. Oka, and P.V. Sasorov, J. Phys. B15:3599 (1982); Soviet and other literature on this problem is reviewed in N.B. Delone, V.P. Krainov, and D.L. Shepelyansky, Usp. Fiz. Nauk 140:355 (1983) [Sov. Phys. Usp. 26:551 (1983)].

    Article  ADS  Google Scholar 

  5. R.V. Jensen, Phys. Rev. A30:386 (1984).

    Article  ADS  Google Scholar 

  6. J.G. Leopold and D. Richards, J. Phys. B18:3369 (1985).

    ADS  Google Scholar 

  7. J.G. Leopold and D. Richards, J. Phys. B19:1125 (1986).

    ADS  Google Scholar 

  8. O. Rath and D. Richards, in preparation.

    Google Scholar 

  9. From a growing literature, we suggest G.M. Zaslavsky, Phys. Rep. 80:157 (1981); see, also, many of the articles in “Chaotic Behavior in Quantum Systems: Theory and Applications,” edited by G. Casati, Plenum, New York (1985).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Delande and J.C. Gay, Phys. Rev. Lett. 57:2006 (1986).

    Article  ADS  Google Scholar 

  11. P.M. Koch, in Ref. 3. D.R. Mariani and W. van de Water contributed importantly to the microwave ionization results presented in this reference.

    Google Scholar 

  12. K.A.H. van Leeuwen, G. v. Oppen, S. Renwick, J.B. Bowfin, P.M. Koch, R.V. Jensen, O. Rath, D. Richards, and J.G. Leopold, Phys. Rev. Lett. 55:2231 (1985); P.M. Koch, in “Fundamental Aspects of Quantum Theory,” A. Frigerio and V. Gorini, editors, Plenum, New York (1986).

    Article  ADS  Google Scholar 

  13. P.M. Koch, in: “Rydberg States of Atoms and Molecules,” R.F. Stabbings and F.B. Dunning, editors, Cambridge University Press, New York (1983).

    Google Scholar 

  14. J.E. Bayfield and L.A. Pinnaduwage, Phys. Rev. Lett. 54:313 (1985) and J. Phys. B18:L49 (1985); J.N. Bardsley, B. Sundaram, L.A. Pinnaduwage, and J.E. Bayfield, Phys. Rev. Lett. 56:1007(1986); J.E. Bayfield, elsewhere in this volume.

    Article  ADS  Google Scholar 

  15. J.G. Leopold and D. Richards, J. Phys. B (to be published, 1987).

    Google Scholar 

  16. P.M. Koch and D.R. Mariani, Phys. Rev. Lett. 46:1275 (1981).

    Article  ADS  Google Scholar 

  17. K.A.H. van Leeuwen, P.M. Koch, 0. Rath, D. Richards, J.G. Leopold, and R.V. Jensen, in preparation.

    Google Scholar 

  18. K.A.H. van Leeuwen and P.M. Koch, in preparation.

    Google Scholar 

  19. R. Bluemel and U. Smilansky, Proceedings of Adriatico Research Conference on Quantum Chaos, Trieste, June 1986, to be published in Physics Scripts, 1987.

    Google Scholar 

  20. Structure in microwave experiments with helium Rydberg atoms has also been linked to avoided crossings of its Floquet eigenstater; see W. van de Water, K. van Leeuwen, P. Koch, and T. Bargeman, Bull. Am. Phys. Soc. 31:942 (1986).

    Google Scholar 

  21. R. Bluemel, U. Smilansky, P.M. Koch, K.A.H. van Leeuwen, O. Rath, and D. Richards, in preparation.

    Google Scholar 

  22. G. Casati, B.V. Chirikov, and D.L. Shepelyansky, Phys. Rev. Lett. 63:2525 (1984); G. Casati, B.V. Chirikov, D.L. Shepelyansky, and I. Guarneri, Phys. Rev. Lett. 57:823(1986).

    Article  ADS  Google Scholar 

  23. S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. Lett. 49:509 (1982); Phys. Rev. A29:1639(1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. J.N. Bardsley and M.J. Comella, J. Phys. B19:L565 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Y. S. Kim W. W. Zachary

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Koch, P.M., van Leeuwen, K.A.H., Rath, O., Richards, D., Jensen, R.V. (1987). Microwave ionization of highly excited hydrogen atoms: Experiment and theory. In: Kim, Y.S., Zachary, W.W. (eds) The Physics of Phase Space Nonlinear Dynamics and Chaos Geometric Quantization, and Wigner Function. Lecture Notes in Physics, vol 278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17894-5_330

Download citation

  • DOI: https://doi.org/10.1007/3-540-17894-5_330

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17894-1

  • Online ISBN: 978-3-540-47901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics