Skip to main content

Secondary relaxations and the properties of glasses and liquids

  • Conference paper
  • First Online:
Molecular Dynamics and Relaxation Phenomena in Glasses

Part of the book series: Lecture Notes in Physics ((LNP,volume 277))

Abstract

Thermally activated translational and/or rotational motions of groups of atoms or molecules occur in localized regions of the rigid matrix of glasses, glassy liquid crystals and glassy crystals. Known as secondary relaxations, these are observed by dielectric and mechanical relaxation spectroscopy at temperatures near and below Tg and show features which are remarkably similar amongst the various types of disordered solids. An analysis of the heat capacity and entropy of the three types of disordered solids also shows a substantial non-vibrational contribution from the availability of configurational states in localized regions in an internal thermodynamic equilibrium embedded in a rigid matrix. In this article, the relevance of the kinetic and thermodynamic aspects of such relaxations, their temperature, density and time dependence and their link with the low-temperature tunneling states in a glass are considered.

That the tunneling centres responsible for the low temperature thermodynamic behaviour of a glass are linked with, or identified as, those local regions where thermally excited orientational and/or translational diffusion over short distances in an otherwise rigid glassy matrix occurs, is tested by three sets of different experiments, namely, (i) physical ageing, (ii) regions created in crystals by neutron irradiation and (iii) regions created by addition of a second component to a glass. All of these seem to suggest that the concept of a disordered solid as an elastic continuum is unsatisfactory and that a description of its heat capacity should also include the energy associated with the configurational states involved in secondary relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johari, G.P., Phil. Mag. 46 (1982) 549

    Google Scholar 

  2. Johari, G.P., J.W. Goodby and G.E. Johnson, Nature (London) 297 (1982) 315

    Google Scholar 

  3. Johari, G.P., and J.W. Goodby, J. Chem. Phys. 77 (1982) 5165

    Google Scholar 

  4. Suga, H. and S. Seki, J. Noncryst. Solids 16 (1974) 171

    Google Scholar 

  5. Gough, S.R., S.K. Garg and D.W. Davidson, Chem. Phys. 3, 239 (1974). See also Johari, G.P., J. Chem. Phys. 74 (1981) 1326

    Google Scholar 

  6. Ross, R.G. and P. Andersson, Can. J. Chem. 60 (1982) 881

    Google Scholar 

  7. Johari G.P., and M. Goldstein, J. Chem. Phys. 53 (1970) 2372

    Google Scholar 

  8. Johari, G.P., in “Plastic Deformation of Amorphous and Semicrystalline Materials”, Les Houches Lectures 1982, ed. B. Escaig and C.G'Sell (Les Editions du Physique, 1982), p. 109

    Google Scholar 

  9. Williams, G. in NATO Advanced Study Institute, Proceedings ed. Orville, Thomas and Yarwood (1983)

    Google Scholar 

  10. Johari, G.P., Ann. N.Y. Acad. Sci. 279 (1976) 117

    Google Scholar 

  11. Perez, J., J.Y. Cavaille, S. Etienne, F. Fouquet and F. Guyot, Ann. Phys. (Fr.) 8 (1983) 417

    Google Scholar 

  12. Pathmanathan, K. and G.P. Johari, J. Phys. C.18 (1985) 6535

    Google Scholar 

  13. McCrum, N.G., R.E. Read and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London 1967)

    Google Scholar 

  14. Williams, G., “Static and Dynamic Properties of Solid Polymers”, NATO Advanced Study Institute Proceedings, ed. R. Pethrick and R.W. Richards (D. Reidl Publ. Holland 1982)

    Google Scholar 

  15. Mai, C., S. Etienne, J. Perez and G.P. Johari, Phil. Mag. 50 (1984) 657

    Google Scholar 

  16. Johari, G.P. and C.P. Smyth, J. Chem. Phys. 56 (1972) 4411

    Google Scholar 

  17. Boehm, L. and C.A. Angell, J. Noncryst. Solids 40 (1980) 83

    Google Scholar 

  18. Abkowitz, M. and D.M. Pai, Phys. Rev. B18 (1978) 1741

    Google Scholar 

  19. Leduc, J. and A.H. Kalantar, J. Chem. Phys. 73, (1980) 5330

    Google Scholar 

  20. Etienne, S., J.Y. Cavaille, J. Perez and G.P. Johari, Phil. Mag. 51A (1985) L35

    Google Scholar 

  21. Petrie, S.E.B., J. Macromol. Sci. Phys. 12 (1976) 225

    Google Scholar 

  22. Simha, R., J.M. Roe and V.S. Nanda, J. Appl. Phys. 43 (1972) 4312

    Google Scholar 

  23. Goldstein, M., Ann. N.Y. Acad. Sci. 279, 68 (1976); J. Chem. Phys. 64 (1976) 4767

    Google Scholar 

  24. Johari, G.P., Ann. N.Y. Acad. Sci. 279, 102 (1976); Phil. Mag. 41 (1980) 41

    Google Scholar 

  25. Johari, G.P., Phil. Mag. 35 (1977) 1077

    Google Scholar 

  26. Suga, H. and S. SEki, Bull. Chem. Soc. Japan 46 (1973) 3020

    Google Scholar 

  27. Johari, G.P., J. Chem. Phys. 77 (1982) 4619

    Google Scholar 

  28. Stevels, J.M., J. Non Cryst. Solids 40 (1980) 69

    Google Scholar 

  29. Haddad, J. and M. Goldstein, J. Noncryst. Solids 30 (1978) 1

    Google Scholar 

  30. Johari, G.P., J. Chem. Phys. 58 (1973) 1766

    Google Scholar 

  31. Adams, G. and J.H. Gibbs, J. Chem. Phys. 43 (1965) 139

    Google Scholar 

  32. Struik, L.C.E., Ann. N.Y. Acad. Sci. 279 (1976) 78

    Google Scholar 

  33. Kovacs, A.J., Fortschr. Hochpolym. Forsch. 3 (1963) 394

    Google Scholar 

  34. Cavaille, J.Y., S. Etienne, J. Perez, L. Monnerie and G.P. Johari, Polymer 27 (1985) 686

    Google Scholar 

  35. Pathmanathan, K., G.P. Johari, J.P. Faivre and L. Monnerie, J. Polymer Sci. (Polymer Phys.) 24 (1986) 1587

    Google Scholar 

  36. Stephens, R.B., J. Appl. Phys. 49 (1978) 5855

    Google Scholar 

  37. Etienne, S., Thesis, University of Lyon, France, 1986

    Google Scholar 

  38. Bouzabata, B., R. Ingalls and K.V. Rao, J. Appl. Phys. 53 (1982) 2324

    Google Scholar 

  39. Chen, H.S., R.C. Sherwood, H.J. Leamy and E.M. Georgy, IEEE Trans. Magn. 12 (1976) 933

    Google Scholar 

  40. Libermann, H.H., C.D. Grahm and P.J. Flanders, ibid. 13 (1977) 1541

    Google Scholar 

  41. Johari, G.P., Polymer 27 (1986) 866

    Google Scholar 

  42. Zeller, R.C. and R.O. Pohl, Phys. Rev. B4 (1971) 2029

    Google Scholar 

  43. Bernal, J.D., Nature (London) 185, 68 (1960: Proc. Roy. Soc. Lond. A280 (1964) 229. “The Geometry of the Structure of Liquids” in Liquids: Structure, Properties and Solid Interactions. T.J. Hughel, Ed. (Elsevier, 1965) pp. 25

    Google Scholar 

  44. Anderson, P.W., B.I. Halperin and C.M. Varma, Phil. Mag. 25 (1972) 1

    Google Scholar 

  45. Phillips, W.A., J. Low Temp. Phys. 7 (1972) 351

    Google Scholar 

  46. Pohl, R.O., Phase Transitions 5 (1985) 239

    Google Scholar 

  47. Frank, M. and H.A. Stuart, Kolloid. Ziet. 225 (1968) 1

    Google Scholar 

  48. Guerdoux, L. and E. Marchal, Polymer 22 (1981) 1199

    Google Scholar 

  49. Cohen, M.H. and G.S. Grest, Phys. Rev. Lett. 45 (1980) 1271

    Google Scholar 

  50. Phillips, J.C., Phys. Rev. B24 (1981) 1744

    Google Scholar 

  51. Raychaudhury, A.K. and R.O. Pohl, Solid State Commun. 37 (1980) 105

    Google Scholar 

  52. Raychaudhury, A.K. and R.O. Pohl, Phys. Rev. B25 (1982) 1310

    Google Scholar 

  53. McDonald, W.C., A.C. Anderson and J. Schroeder, Phys. Rev. B31 (1985) 1090

    Google Scholar 

  54. Chang, S.S. and A.B. Bestul, J. Chem. Thermodyn. 6 (1974) 325

    Google Scholar 

  55. Lasjaunias, J.C., B. Picot, A. Ravex and M. Vandorpe, The Second Conference of the Condensed Matter Division of the European Physical Society on Dielectrics and Phonons, Budapest, extended abstracts p. 199, 1974

    Google Scholar 

  56. Etienne, S., thesis 1986, Université de Lyon, France

    Google Scholar 

  57. Calemczuk, R., Thésé, Docteur des Sciences, L'Université Scientifique et Medicale et L'Institut Nationale Polytechnique de Grenoble, p. 133 (1983)

    Google Scholar 

  58. Lasjaunias, J.C., G. Penn, A. Ravex and M. Vandorpe, J. Physique L41 (1980) L131. J. Noncryst. Solids 57 (1983) 157

    Google Scholar 

  59. Lasjaunias, J.C., G. Penn and M. Vandorpe in “Phonon Scattering in Condensed Matter”, H.J. Maris, ed. (Plenum, 1980) p. 25

    Google Scholar 

  60. Lasjaunias, J.C., A. Ravex, D. Laborde and O. Bethoux, Physica 126B (1984) 126

    Google Scholar 

  61. Ravex, A., J.C. Lasjaunias and O. Bethoux, J. Phys. F. Met. Phys. 14 (1984) 329

    Google Scholar 

  62. Berman, R., Proc. Roy. Soc. (Lond.) A208 (1951) 90

    Google Scholar 

  63. Gardner, J.W. and A.C. Anderson, Phys. Rev. B23 (1981) 474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Dorfmüller Graham Williams

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Johari, G.P. (1987). Secondary relaxations and the properties of glasses and liquids. In: Dorfmüller, T., Williams, G. (eds) Molecular Dynamics and Relaxation Phenomena in Glasses. Lecture Notes in Physics, vol 277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17801-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-17801-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17801-9

  • Online ISBN: 978-3-540-47838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics