Skip to main content

Models for dynamics of relaxation in glasses

  • Conference paper
  • First Online:
Molecular Dynamics and Relaxation Phenomena in Glasses

Part of the book series: Lecture Notes in Physics ((LNP,volume 277))

Abstract

Wide classes of disordered materials display relaxations which cannot be expressed in ] terms of a single decay rate. The analysis of experimental data often leads to the Kohlrausch-Williams-Watts stretched exponential exp[-(t/τ)β] or to algebraic time dependences C/tY .In this article, we show how such decay patterns may arise from quite different microscopic dynamics. Possible candidates for modelling disorder are (a) self-similar spatial distributions of sites (fractal geometries), (b) distributions of waiting times and (c) self-similar distributions of energy barriers (ultrametric spaces). For each of these models one may obtain under certain conditions stretched exponential or algebraic decays, although the microscopic relaxation dynamics differ in every case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Williams and D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Google Scholar 

  2. G. Williams, Adv. Polym. Sci. 33, 59 (1979)

    Google Scholar 

  3. A.K. Jonscher, Nature 267, 673 (1977)

    Google Scholar 

  4. K.L. Ngai, Comments Solid State Phys. 9, 127 (1979); 9, 141 (1980)

    Google Scholar 

  5. See “Relaxation in Complex Systems”, K.L. Ngai and G.B. Wright eds. (Natl. Techn. Inform. Service, U.S. Govt. Printing Office, 1985)

    Google Scholar 

  6. A.A. Jones, J.F. O'Gara, P.T. Inglefield, J.T. Bendler, A.F. Yee and K.L. Ngai, Macromolec. 16, 658 (1983)

    Google Scholar 

  7. G.D. Patterson, Adv. Polym. Sci. 48, 125 (1983)

    Google Scholar 

  8. G. Fytas, Th. Dorfmüller and C.H. Wang, J. Phys. Chem. 87, 5041 (1983)

    Google Scholar 

  9. G. Fytas, A. Patkowski, G. Meier and Th. Dorfmüller, J. Chem. Phys. 80, 2214 (1984), see also the contribution of G. Meier in this volume

    Google Scholar 

  10. G. Fytas, C.H. Wang, G. Meier and E.W. Fischer, Macromolecules 18, 1492 (1985)

    Google Scholar 

  11. G. Meier, G. Fytas and Th. Dorfmüller, Macromolecules 17, 952 (1984)

    Google Scholar 

  12. R. Richert and H. Bässler, Chem. Phys. Lett. 118, 235 (1985)

    Google Scholar 

  13. V.L. Vyazovkin, B.V. Bol'shakov and V.A. Tolkatchev, Chem. Phys. 75, 11 (1983)

    Google Scholar 

  14. J.R. Miller, Chem. Phys. Lett. 22, 180 (1973)

    Google Scholar 

  15. J.V. Beitz and J.R. Miller, J. Chem. Phys. 71, 4579 (1979)

    Google Scholar 

  16. J. Friedrich and D. Haarer, Angew. Chemie, Int. Engl. Ed. 23, 113 (1984)

    Google Scholar 

  17. J. Friedrich and A. Blumen, Phys. Rev. B32, 1434 (1985)

    Google Scholar 

  18. J. Tauc, Semicond. and Semimetals 21B, 299 (1984)

    Google Scholar 

  19. H. Scher and E.W. Montroll, Phys. Rev. B7, 4502 (1973)

    Google Scholar 

  20. G. Pfister and H. Scher, Adv. Phys. 27, 747 (1978)

    Google Scholar 

  21. R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984)

    Google Scholar 

  22. A. Blumen, Nuovo Cimento B63, 50 (1981)

    Google Scholar 

  23. B.B. Mandelbrot, “The Fractal Geometry of Nature”, W.H. Freeman and Co., San Francisco (1982)

    Google Scholar 

  24. K.J. Falconer, “The Geometry of Fractal Sets”, Cambridge Univ. Press (1985)

    Google Scholar 

  25. H. Scher and M. Lax, Phys. Rev. B7, 4491; 4502 (1973)

    Google Scholar 

  26. N. Bourbaki, “Eléments de mathématique, Topologie générale”, Chap. IX, CCLS, Paris (1974)

    Google Scholar 

  27. W.H. Schikhof, “Ultrametric Calculus”, Cambridge Univ. Press (1984)

    Google Scholar 

  28. G. Zumofen, A. Blumen and J. Klafter, J. Chem. Phys. 82, 3198 (1985)

    Google Scholar 

  29. A. Blumen, J. Klafter and G. Zumofen, “Models for Reaction Dynamics in Glasses”, in: “Optical Spectroscopy of Glasses”, I. Zschokke-Gränacher ed., Reidel, Dordrecht, Holland (1986) p. 199

    Google Scholar 

  30. E.A. DiMarzio, “Equilibrium Theory of Glasses”, in “Structure and Mobility in Molecular and Atomic Glasses”, J.M. O'Reilly and M. Goldstein eds., Ann. N.Y. Acad. Sci. 371, 1 (1981)

    Google Scholar 

  31. C.A. Angell, Ann. N.Y. Acad. Sci. 371, 136 (1981)

    Google Scholar 

  32. L.V. Woodcock, Ann. N.Y. Acad. Sci. 371, 274 (1981)

    Google Scholar 

  33. C.A. Angell, J.H.R. Clarke and L.V. Woodcock, Ann. Rev. Phys. Chem. 48, 397 (1981)

    Google Scholar 

  34. S.H. Glarum, J. Chem. Phys. 33, 1371 (1960)

    Google Scholar 

  35. M.F. Shlesinger and E.W. Montroli, Proc. Natl. Acad. Sci. USA 81, 1280 (1984)

    Google Scholar 

  36. J.T. Bendler and M.F. Shlesinger, in: “Relaxation in Complex Systems”, Ref. [5], p. 261

    Google Scholar 

  37. G. Zumofen and A. Blumen, Chem. Phys. Lett. 88, 63 (1982)

    Google Scholar 

  38. G.H. Weiss and R.J. Rubin, Adv. Chem. Phys. 52, 363 (1983)

    Google Scholar 

  39. J. Klafter, A. Blumen and G. Zumofen, J. Stat. Phys. 36, 561 (1984)

    Google Scholar 

  40. S. Redner and K. Kang, J. Phys. A17, L 451 (1984)

    Google Scholar 

  41. A. Blumen, G. Zumofen and J. Klafter, Phys. Rev. B30, 5379 (1984)

    Google Scholar 

  42. A. Blumen, J. Klafter and G. Zumofen, in: “Transport and Relaxation Processes in Random Materials”, J. Klafter et al. eds., World Scientific, Singapore (1986)

    Google Scholar 

  43. F. Family and D.P. Landau eds., “Kinetics of Aggregation and Gelation”, North-Holland, Amsterdam (1984)

    Google Scholar 

  44. R. Hilfer and A. Blumen, J. Phys. A17, L 537 (1984)

    Google Scholar 

  45. R. Hilfer and A. Blumen, J. Phys. A17, L 783 (1984)

    Google Scholar 

  46. S. Alexander and R. Orbach, J. Physique Lett. 43, L 625 (1982)

    Google Scholar 

  47. E.W. Montroll and G.H. Weiss, J. Math. Phys. 6, 167 (1965)

    Google Scholar 

  48. A. Blumen, J. Klafter, B.S. White and G. Zumofen, Phys. Rev. Lett. 53, 1301 (1984) (

    Google Scholar 

  49. P.W. Anderson, in “Ill-Condensed Matter”, R. Balian, R. Maynard and G. Toulouse eds., North-Holland, Amsterdam (1979) p. 162

    Google Scholar 

  50. J. Jäckle, in: “Amorphous Solids”, W.A. Phillips ed., Topics in Current Phys. 24, 135 (1985) Springer Verlag, Berlin, and Reports on Progress in Physics (1986), to be published

    Google Scholar 

  51. V. Rosato and G. Williams, Adv. Molec. Relax. and Interact. Processes 20, 233 (1981)

    Google Scholar 

  52. G.P. Johari, in: “Plastic Deformation of Amorphous and Semicrystalline Materials”, Les-Houches Lectures (Editions de Physique, 1982)

    Google Scholar 

  53. A.D. Gordon, “Classification”, Chapman and Hall, London (1981)

    Google Scholar 

  54. A. Blumen, J. Klafter and G. Zumofen, J. Phys. A19, L 77 (1986)

    Google Scholar 

  55. B.A. Huberman and M. Kerszberg, J. Phys. A18, L 331 (1985)

    Google Scholar 

  56. A.T. Ogielski and D.L. Stein, Phys. Rev. Lett. 55, 1634 (1985)

    Google Scholar 

  57. S. Grossmann, F. Wegner and K.H. Hoffmann, J. Physique Lett. 46, L 575 (1985)

    Google Scholar 

  58. P.D. deGennes, Compt. Rendus Acad. Sci. (Paris), Sér. II, 296, 881 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Dorfmüller Graham Williams

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Blumen, A. (1987). Models for dynamics of relaxation in glasses. In: Dorfmüller, T., Williams, G. (eds) Molecular Dynamics and Relaxation Phenomena in Glasses. Lecture Notes in Physics, vol 277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17801-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-17801-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17801-9

  • Online ISBN: 978-3-540-47838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics