Skip to main content

From localized to extended states in a time-dependent quantum model

  • III. Time Dependent Systems
  • Conference paper
  • First Online:
Quantum Chaos and Statistical Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 263))

  • 230 Accesses

Abstract

The problem of a particle inside a rigid box with one of the walls oscillating periodically in time is studied quantum mechanically. In the classical limit, this model was introduced by Fermi in the context of cosmic ray physics. The classical solutions can go from being quasiperiodic to chaotic, as a function of the amplitude of the wall oscillation. In the quantum case, we calculate the spectral properties of the corresponding evolution operator, i.e.: the quasi-energy eigenvalues and eigenvectors. The specific form of the wall oscillation, e.g. \(\ell (t) = \sqrt {1 + 2\delta \left| t \right|}\), with |t| ≤ 1/2, and ℓ(t + 1) = ℓ(t) , is essential to the solutions presented here. It is found that as ℏ increases with δfixed, the nearest neighbor separation between quasi-energy eigenvalues changes from showing no energy level repulsion to energy level repulsion. This transition, from Poisson-like statistics to Gaussian-Orthogonal-Ensemble-like statistics is tested by looking at the distribution of quasi-energy level nearest neighboor separations and the Δ3(L) statistics. These results are also correlated to a transition between localized to extended states in energy space. The possible relevance of the results presented here to experiments in quasi-one-dimensional atoms is also discussed.

Talk presented at the Second International Conference on Quantum Chaos held in Cuernavaca, Mor., Mex. January 1986

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example, M.V.Berry, Chaotic behavior in deterministic systems. Les Houches summer school XXXVI, Ed. R. Helleman and G. Joos. (North Holland 1981). G. Zaslasvskii Phys. Rep.80, 157.(1981)

    Google Scholar 

  2. M.V.Berry and M.Tabor Proc.Roy.Soc.London,Ser A356, C375 (1977); S.W.McDonald and A.N.Kaufman Phys.Rev.Lett. 42,1189 (1979);G.Casati et.al. Nuovo Cimiento Lett. 28,279 (1980); M.V.Berry Ann.Phys.(NY)131, 163 (1981). 3. O.Bohigas, M.J. Giannoni, and C. Schmit Phys.Rev.Lett. 52, 1.(1984); T.H. Seligman, J.J. Versbaarschot, and M.R. Zirnbauer ibid. 53 215.(1984); E.Heller,H. Koppel and L.S. Cerderbaum ibid. 52 1665.(1984); T.H.Seligman and J.J.Versbaarshot Phys.Lett. A108 183. (1985) and J.Phys. A18 2751. (1985).

    Google Scholar 

  3. See the recent updated review by T.A. Brody et.al. Rev.Mod.Phys. 53,385. (1981)

    Google Scholar 

  4. R.V.Jensen Phys. Rev.Lett. 49 1365 (1982) and Phys.Rev. A30 386(1984).

    Google Scholar 

  5. E.Bayfield and P.M Koch Phys.Rev.Lett. 33,258 (1974). P.M.Koch and D.R.Mariani ibid. 46, 1275 (1981); K.A.H. van Leeuwen et.al. ibid 55, 2231 (1985), and references therein. J.Bayfield, “Fundamental Aspects of Quantum Theory”, (Notes in Physics, Springer Verlag, 1986). J.E.Bayfield and L.A.Pinnaduwage, Phys. Rev Lett. 54 313 (1985). J.N. Bardsley at.al. ibid. 56, 1007 (1986)

    Google Scholar 

  6. G.Casati,B.V.Chirikov,F.M.Izrailev, and J.Ford in, Stochastic behavior in classical and quantum Hamiltonian Systems, ed G.Casati and J.Ford (Lecture Notes in physics Vol 93, 334: (1979). Springer, NY).

    Google Scholar 

  7. F.M.Izrailev and D.L.Shepelyanski, Dokl.Akad.Nauk SSSR 249,1103 (1979). [ Sov.Phys.Dokl. 24, 996 (1979)]; T.A. Hogg and B.A.Huberman Phys.Rev.Lett. 48,711 (1982); Phys.Rev. A28, 22.(1983); S.J.Chang and K.J.Shi Phys.Rev.Lett 55,(1985).

    Google Scholar 

  8. M.Feingold,S.Fishman, D.R.Grempel and R.E.Prange hys.Rev. B31, 6852 (1985)

    Google Scholar 

  9. S.Fishman, D.R.Grempel and R.E.Prange Phys.Rev.Lett. 49, 509 (1982). D.R.Grempel and R.E.Prange and S.Fishman Phys. Rev. A 29, 1639 (1984)

    Google Scholar 

  10. A.Molcanov Comm.Math.Phys. 78, 429 (1981)

    Google Scholar 

  11. F.M.Izrailev Pys. Rev. Lett. 56, 541 (1986)

    Google Scholar 

  12. J.V. José and R.Cordery ibid. 56, 290 (1986)

    Google Scholar 

  13. J.V. José, ( to be publhised )

    Google Scholar 

  14. G.M.Zaslavskii and B.Chirikov Dokl. Akad. Nauk. SSSR 159, 306 (1964); [ Sov.Phys.Doklady 9, 760 (1965)]; A.Brahic Astrophys. 12 98 (1971); M.A.Lieberman and A.J.Lichtenberg Phys.Rev. A5 1852 (1972). For an excelent review see “Regular and stochastic motion” by A.J. Lichtenberg and A.M. Lieberman, Publ. Springer-Verlag,(1983)

    Google Scholar 

  15. E.Fermi Phys. Rev. 75, 1169.(194

    Google Scholar 

  16. C. Roman and T. Seligman ( in this proceedings ).

    Google Scholar 

  17. M. Berry, has also reconized in the past that the type of functional forms given by Eq(6), do have the property of simplifying highly nonlinear problems ( private communication).

    Google Scholar 

  18. G.Casati, B.Chirikov and D.L. Shepelyanskii, Phys. Rev. Lett. 53, 2525 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. H. Seligman H. Nishioka

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

José, J.V. (1986). From localized to extended states in a time-dependent quantum model. In: Seligman, T.H., Nishioka, H. (eds) Quantum Chaos and Statistical Nuclear Physics. Lecture Notes in Physics, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17171-1_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-17171-1_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17171-3

  • Online ISBN: 978-3-540-47230-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics