Galois connections

  • Horst Herrlich
  • Miroslav Hušek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 239)


Full Subcategory Forgetful Functor Initial Source Galois Connection Concrete Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Birkhoff, Lattice Theory. Amer. Math. Soc. Collog. Publ. 25 (1940).Google Scholar
  2. [2]
    G.C.L. Brümmer, Topological functors and structure functors. Springer Lecture Notes Math. 540 (1976) 109–135.Google Scholar
  3. [3]
    C.J. Everett, Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944) 514–525.Google Scholar
  4. [4]
    H. Herrlich, Factorizations of morphisms f: B → FA. Math. Z. 114 (1970) 180–186.Google Scholar
  5. [5]
    J.R. Isbell, Top and its adjoint relatives. Gen. Topology and its Relations to Modern Analysis and Algebra (Prague 1971), 143–154.Google Scholar
  6. [6]
    A. Melton and G.E. Strecker, Structures supporting Galois connections. Preprint.Google Scholar
  7. [7]
    S. Mac Lane, Categories for the Working Mathematician. Springer-Verlag 1971.Google Scholar
  8. [8]
    O. Ore, Galois connexions. Trans. Amer. Math. Soc. 55 (1944) 493–513.Google Scholar
  9. [9]
    G. Pickert, Bemerkungen über Galois-Verbindungen. Archiv Math. 3 (1952) 285–289.Google Scholar
  10. [10]
    D. Pumplün, Kategorien Vorlesungsskript Univ. Münster 1972.Google Scholar
  11. [11]
    J. Schmidt, Beiträge zur Filtertheorie II. Math. Nachr. 10 (1953) 197–232.Google Scholar
  12. [12]
    O. Wyler, On the categories of general topology and topological algebra. Archiv Math. 22 (1971) 7–17.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Horst Herrlich
    • 1
  • Miroslav Hušek
    • 2
  1. 1.Fachbereich Mathemematik und InformatikUniversität BremenBremenFed. Red. Germany
  2. 2.Matematicky UstavKarlovy UniversityPraha 8 KarlinCSSR

Personalised recommendations