Skip to main content

New results on verified inclusions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 235))

Abstract

The computational results of traditional numerical algorithms on computers are usually good approximations to the solution of a given problem. However, no verification is provided for some bound on the maximum relative error of the approximation. As can be demonstrated by ill-conditioned examples, those approximations may be drastically wrong. The algorithms based on the inclusion theory (cf. [38]) do have an automatic verification process. Rather than approximations to the solution an inclusion of the solution is computed and the correctness of the bounds together with the existence and uniqueness of the solution within the bounds is automatically verified by the computer without any effort on the part of the user. The computing time of these algorithms is of the order of a comparable, standard floating-point algorithm (such as Gaussian elimination in case of general linear systems).

In the following some new results complementing the inclusion theory are given. One of the main results is that the inclusion sets need not to be convex. Therefore other types of inclusion sets such as torus-sectors can be used. Another main observation is that the new and old theorems can be proved without using fixed point theorems. Moreover improvements of existing theorems of the inclusion theory by means of weaker assumptions are presented.

Another fundamental observation is the following. It is well-known that a real iteration in IRn with affine iteration function converges if and only if the spectral radius of the iteration matrix is less than one. It can be shown that a similar result holds for our inclusion algorithm: An inclusion will be achieved if and only if the spectral radius of the iteration matrix is less then one. This result is best possible.

It is demonstrated by means of theorems and examples that even for extremely ill-conditioned examples very sharp inclusions of the solution are computed. The inclusions are almost always of least significant bit accuracy, i.e. the left and right bounds of the inclusion are adjacent floating-point numbers.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, J.P., Brent, R.P. (1975). Fast Local Convergence with Single and Multistep Methods for Nonlinear Equations, Austr. Math. Soc. 19 (series B), 173–199.

    Google Scholar 

  2. Alefeld, G., Intervallrechnung über den komplexen Zahlen und einige Anwendungen. Dissertation, Universität Karlsruhe, 1968.

    Google Scholar 

  3. Alefeld, G. and Herzberger, J., "Einführung in die Intervallrechnung". Reihe Informatik, 12. Wissenschaftsverlag des Bibliographischen Instituts Mannheim, 1974.

    Google Scholar 

  4. Alefeld, G. and Herzberger, J., "Introduction to Interval Analysis", Academic Press, New York (1983).

    Google Scholar 

  5. Alefeld, G. (1979). Intervallanalytische Methoden bei nichtlinearen Gleichungen. In "Jahrbuch Überblicke Mathematik 1979", B.I. Verlag, Zürich.

    Google Scholar 

  6. Bauer, F.L. and Samelson, K. Optimale Rechengenauigkeit bei Rechenanlagen mit gleitendem Komma, Z. Angew. Math. Phys. 4, 312–316 (1953).

    Google Scholar 

  7. Bohlender, G., Floating-point computation of functions with maximum accuracy. IEEE Trans. Compute. C-26, No. 7, 621–632 (1977).

    Google Scholar 

  8. Bohlender, G., Genaue Summation von Gleitkommazahlen, Computing Suppl. 1, 21–32 (1977).

    Google Scholar 

  9. Collatz, L., "Funktionalanalysis und Numerische Mathematik," Springer-Verlag, Berlin and New York, 1968.

    Google Scholar 

  10. Coonan, J., et al. (1979). A proposed standard for floating-point arithmetic, SIGNUM Newsletter.

    Google Scholar 

  11. Forsythe, G.E., and Moler, C.B., "Computer Solution of Linear Algebraic Systems", Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

    Google Scholar 

  12. Forsythe, G.E., Pitfalls in computation, or why a math book isn't enough, Tech.Rep. No. CS147, pp. 1–43. Computer Science Department, Stanford University, Stanford,California, 1970.

    Google Scholar 

  13. Haas, H.Ch., Implementierung der komplexen Gleitkommaarithmetik mit maximaler Genauigkeit. Diplomarbeit, Institut für Angewandte Mathematik, Universität Karlsruhe, 1975.

    Google Scholar 

  14. Hansen, E., Interval Arithmetic in Matrix Computations, Part 1. SIAM J. Numer. Anal. 2, 308–320 (1965), Part II. SIAM J. Numer. Anal. 4, 1–9 (1967).

    Google Scholar 

  15. Heuser, H. (1967). Funktionalanalysis. Mathematische Leitfäden, G.B. Teubner, Stuttgart.

    Google Scholar 

  16. Kahan, W. and Parlett, B.N., Können Sie sich auf Ihren Rechner verlassen?, "Jahrbuch Überblicke Mathematik 1978". Wissenschaftsverlag des Bibliographischen Instituts Mannheim, pp. 199–216, (1978).

    Google Scholar 

  17. Kaucher, E., Rump, S.M. (1982). E-methods for Fixed Point Equations f(x)=x, Computing 28, p.31–42.

    Google Scholar 

  18. Kaucher, E., Miranker, W.L., "Self-Validating Numerics of Function Space Problems", Academic Press, New York (1984).

    Google Scholar 

  19. INTEL 12 1586-001. (1980). The 8086 Family User's Manual, Numeric Supplement.

    Google Scholar 

  20. Köberl, D. (1980). The Solution of Non-linear Equations by the Computation of Fixed Points with a Modification of Sandwich Method, Computing, 25, 175–178.

    Google Scholar 

  21. Krawczyk, R. (1969). Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing, 4, 187–220.

    Google Scholar 

  22. Knuth, D., "The Art of Computer Programming", Vol. 2 Addison-Wesley, Reading, Massachusetts, 1962.

    Google Scholar 

  23. Kulisch, U., An axiomatic approach to rounded computations, TS Report No. 1020, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1969, and Numer. Math, 19, 1–17 (1971).

    Google Scholar 

  24. Kulisch, U., Grundzüge der Intervallrechnung, Überblicke Mathematik 2, Bibliographisches Institut Mannheim, 51–98 (1969).

    Google Scholar 

  25. Kulisch, U., Formalization and implementation of floating-point arithmetic, Computing 14, 323–348 (1975).

    Google Scholar 

  26. Kulisch, U., "Grundlagen des Numerischen Rechnens-Mathematische Begründung der Rechnerarithmetik", Reihe Informatik, 19. Wissenschaftsverlag des Bibliographischen Instituts Mannheim, 1976.

    Google Scholar 

  27. Kulisch, U., Ein Konzept für eine allgemeine Theorie der Rechnerarithmetik, Computing Suppl. 1, 95–105 (1977).

    Google Scholar 

  28. Kulisch, U., Miranker, W.L. (1981). Computer Arithmetic in Theory and Practise. Academic Press, New York.

    Google Scholar 

  29. Kulisch, U.W., Miranker, W.L. (eds.): A New Approach to Scientific Computation, Academic Press, New York, 1983.

    Google Scholar 

  30. Moore, R.E., "Interval Analysis". Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

    Google Scholar 

  31. Moore, R.E. (1977). A Test for Existence of Solutions for Non-Linear Systems, SIAM J. Numer. Anal., 4.

    Google Scholar 

  32. Moré, J.J., Cosnard, M.Y. (1979). Numerical Solution of Non-Linear Equations. ACM Trans. on Math. Software, Vol. 5, No. 1, 64–85.

    Google Scholar 

  33. Ortega, J.M., Reinboldt, W.C. (1970). Iterative Solution of Non-linear Equations in several Variables. Academic Press, New York-San Francisco-London.

    Google Scholar 

  34. Perron, O., "Irrationalzahlen". de Gruyter, Berlin, 1960.

    Google Scholar 

  35. Rall, L.B. (1981). Mean value and Taylor forms in interval analysis, SIAM J. Math. Anal. 14, No. 2 (1983).

    Google Scholar 

  36. Reinsch, Ch., Die Behandlung von Rundungsfehlern in der Numerischen Analysis, "Jahrbuch Überblicke Mathematik 1979", Wissenschaftsverlag des Bibliographischen Instituts Mannheim, 43–62 (1979).

    Google Scholar 

  37. Rump, S.M. (1980). Kleine Fehlerschranken bei Matrixproblemen, Dissertation, Universität Karlsruhe.

    Google Scholar 

  38. Rump, S.M. (1983). Solving Algebraic Problems with High Accuracy, Habilitationsschrift, in Kulisch/Miranker: A New Approach to Scientific Computation, Academic Press, New York.

    Google Scholar 

  39. Rump, S.M. (1982). Solving Non-linear Systems with Least Significant Bit Accuracy, Computing 29, 183–200.

    Google Scholar 

  40. Rump, S.M. (1984). Solution of Linear and Nonlinear Algebraic Problems with Sharp, Guaranteed Bounds, Computing Suppl. 5, 147–168.

    Google Scholar 

  41. Rump, S.M. and Kaucher, E., Small bounds for the solution of systems of linear equations, Computing Suppl. 2, 157–164 (1980).

    Google Scholar 

  42. Stoer, J. (1972). Einführung in die Numerische Mathematik I. Heidelberger Taschenbücher, Band 105, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  43. Stoer, J., Bulirsch, R. (1973). Einführung in die Numerische Mathematik II. Heidelberger Taschenbücher, Band 114, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  44. Ullrich, Ch., Zur Konstruktion komplexer Kreisarithmetiken Computing Suppl. 1, 135–150 (1977).

    Google Scholar 

  45. Varga, R.S. (1962). Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  46. Walter, W. (1970). Differential and integral Inequalities. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  47. Wilkinson, J.H., "Rounding Errors in Algebraic Processes". Prentice-Hall, Englewood Cliffs, New Jersey, 1963.

    Google Scholar 

  48. Wongwises, P. Experimentelle Untersuchungen zur numerischen Auflösung von linearen Gleichungssystemen mit Fehlerfassung, Interner Bericht 75/1, Institut für Praktische Mathematik, Universität Karlsruhe.

    Google Scholar 

  49. Yohe, J.M., Roundings in floating-point arithmetic, IEEE Trans. Comput. C.12 No. 6, 577–586 (1973).

    Google Scholar 

  50. Zielke, R., Algol-Katalog Matrizenrechnung, Oldenburg Verlag, München, Wien (1972).

    Google Scholar 

  51. ACRITH High-Accuracy Arithmetic Subroutine Library: General Information Manual, IBM Publications, GC33-6163, (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Willard L. Miranker Richard A. Toupin

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rump, S.M. (1986). New results on verified inclusions. In: Miranker, W.L., Toupin, R.A. (eds) Accurate Scientific Computations. Lecture Notes in Computer Science, vol 235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16798-6_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-16798-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16798-3

  • Online ISBN: 978-3-540-47118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics