Skip to main content

Fast computation of linear finite-dimensional operators over arbitrary rings

  • Conference paper
  • First Online:
Algebraic Algorithms and Error-Correcting Codes (AAECC 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 229))

  • 161 Accesses

Abstract

Invention of the FFT-algorithm [4] suggests that some linear transforms over a ring \(\mathbb{K}\),

$$T:\eta = {\rm A}\xi ,\xi \varepsilon \mathbb{K}^n ,\eta \varepsilon \mathbb{K}^m ,A = (a_{ij} ),a_{ij} \varepsilon \mathbb{K},l \leqslant i \leqslant m,l \leqslant j \leqslant n,$$
((*))

could be computed faster than by the definition algorithm

$$\eta _i = a_{il} \cdot \xi _l + \ldots + a_{in} \cdot \xi _n ,l \leqslant i \leqslant m.$$

The Main Problem : Let \(\mathbb{L}\)be an extension of \(\mathbb{K},\mathbb{K} \subseteq \mathbb{L}\). Find a shortest linear circuit over \(\mathbb{L}\)computing T (*).

We construct an algorithm which reduces this problem to the following one : for a given system of polynomial equations of the form

$$f_k (u_l , \ldots ,u_q ) = \alpha _k ,f_k \varepsilon \mathbb{Z}[u_l , \ldots ,u_q ],\alpha _k \varepsilon \mathbb{K},l \leqslant k \leqslant p,$$
((**))

either find its solution in \(\mathbb{L}\)or prove that such a solution does not exist.

Therefore, when the problem (**) is algorithmically solvable, so is our main problem, — as, e.g., when \(\mathbb{K} = \mathbb{Q},\mathbb{L} = \mathbb{R}\)or \(\mathbb{K} = \mathbb{L}\)=GF(q); in both cases we give explicit (exponential) upper estimates on the complexity of the full algorithms solving the corresponding main problem. We consider also implications of actual or plausible algorithmical unsolvability of the problem (**) for our main problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Belaga: Circuits linéaires. C.R. Acad. Sc. Paris, 301: 2(1985) 53–56.

    Google Scholar 

  2. E. Belaga: Algebra universalis constructiva. To appear in TCS.

    Google Scholar 

  3. E. Belaga: An axiomatic approach to lower bounds problems in computational complexity. Abstracts, Logic Colloquium 1985, Orsay, Paris.

    Google Scholar 

  4. J. Cooley and J. Tukey: Math. Comp. 19 (1965) 297–301.

    Google Scholar 

  5. M. Davis, Yu. Matijasevic, and J. Robinson: Hilbert's tenth problem. ed. F. Browder, Proceedings of AMS, vol. 28 (1976) 323–378.

    Google Scholar 

  6. D. Yu. Grigor'ev and N.N. Vorobiov: Solving systems of polynomial inequalities in subexponential time. Manuscript, 1985.

    Google Scholar 

  7. J. Morgenstern: Complexité linéaire de calcul. Thèse, Nice, 1978.

    Google Scholar 

  8. S. Winograd: Math. Systems Theory 10 (1977) 169–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belaga, E.G. (1986). Fast computation of linear finite-dimensional operators over arbitrary rings. In: Calmet, J. (eds) Algebraic Algorithms and Error-Correcting Codes. AAECC 1985. Lecture Notes in Computer Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16776-5_727

Download citation

  • DOI: https://doi.org/10.1007/3-540-16776-5_727

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16776-1

  • Online ISBN: 978-3-540-39855-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics