Skip to main content

The influence of spherical aberration on gaussian beam propagation

  • Conference paper
  • First Online:
Lie Methods in Optics

Part of the book series: Lecture Notes in Physics ((LNP,volume 250))

  • 372 Accesses

Abstract

Gaussian beams include a number of field or wavefunctions which have a clear quantum mechanical analogue: coherent states, correlated coherent states and discrete modes for quantum oscillators. These are used to model optical fibers and to describe the output of laser devices. When these beams leave their source and travel freely through space, they loose their coherence and aberrate. The source of this aberration is purely geometrical, and is termed spherical aberration. We describe this process in the framework of the Fermat-Hamilton formulation of optics, studying the behaviour of the center of the beam, its width, and the way in which the initial uncorrelation of position and momentum is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Marcuse, Light Transmission Optics, (Van Nostrand, New York, 1972).

    Google Scholar 

  2. K.B. Wolf, The Heisenberg-Weyl ring in quantum mechanics. In Group Theory and its Applications, Vol. III, E.M. Loebl, Ed. (Academic Press, New York, 1975).

    Google Scholar 

  3. M. Nazarathy and J. Shamir, Fourier optics described by operator algebra, J. Opt. Soc. America 70 150–158 (1980); ib. First-order optics—a canonical operator representation: lossless systems, J. Opt. Soc. America 72, 356–364 (1982).

    Google Scholar 

  4. H. Bacry and M. Cadilhac, Metaplectic group and Fourier optics, Phys. Rev. A23, 2533–2536 (1981).

    Google Scholar 

  5. J.R. Klauder, Continuous representation theory. II. Generalized relation between quantum and classical dynamics, J. Math. Phys. 5, 177–1187 (1964).

    Google Scholar 

  6. R. Glauber, Coherent states of the quantum oscillator, Phys. Rev. Lett. 10, 84 (1963).

    Google Scholar 

  7. V.V. Dodonov, E.V. Kurmyshev, and V.I. Man'ko, Generalized uncertainty relation in correlated coherent states, Phys. Lett. 79A, 150–152 (1980).

    Google Scholar 

  8. J.A. Arnaud, Beam and Fiber Optics, (Academic Press, New York, 1976).

    Google Scholar 

  9. M. Leontovich and V. Fock, Solution of the problem of electromagnetic waves along the earth suface by the method of parabolic equations, Sov. J. Phys. 10, 13 (1946).

    Google Scholar 

  10. V.I. Man'ko, Possible applications of the integrals of the motion and coherent state methods for dynamical systems. In Quantum Electrodynamics with Outer Fields (in Russian), (Tomsk State University and Tomsk Pedagogical Institute, Tomsk, USSR, 1977); pp. 101–120.

    Google Scholar 

  11. K.B. Wolf, Canonical transforms. I. Complex linear transforms, J. Math. Phys. 15, 1295–1301 (1974).

    Google Scholar 

  12. K.B. Wolf, Integral Transforms in Science and Engineering, (Plenum, New York, 1979).

    Google Scholar 

  13. M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford, 1959).

    Google Scholar 

  14. H. Goldstein, Classical Mechanics, (Addison-Wesley, Reading, Mass. 1950).

    Google Scholar 

  15. M.H. Stone, Linear transformations in Hilbert space. I. Geometrical aspects, Proc. Nat. Acad. Sci. U.S. 15, 198–200 (1929); II. Analytical aspects; ibid. 423–425; III. Operator methods and group theory; ibid. 16, 172–175 (1930); J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578 (1931).

    Google Scholar 

  16. J.H. Van Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Nat. Acad. Sci. USA, 14, 178–188 (1982).

    Google Scholar 

  17. V.V. Dodonov, V.I. Man'ko, and V.V. Semionov, The density matrix of the canonical transformed Hamiltonian in the Fock basis, P.N. Lebedev Institute of Physics preprint N54, Moscow, 1983.

    Google Scholar 

  18. V.I. Man'ko and K.B. Wolf, The influence of aberrations in the optics of gaussian beam propagation. Reporte de Investigación del Depto. de Matemáticas, Universidad Autónoma Metropolitans, preprint 4, # 3 (1985).

    Google Scholar 

  19. G. Eichmann, Quasi-geometric optics of media with inhomogeneous index of refraction, J. Opt. Soc. America 61, 161–168 (1971).

    Google Scholar 

  20. M. García-Bullé, W. Lassner, and K.B. Wolf, The metaplectic group within the Heisenberg-Weyl ring. Reporte de Investigación del Depto. de Matemáticas, Universidad Autónoma Metropolitans, preprint 4, # 1 (1985); to appear in J. Math. Phys.

    Google Scholar 

  21. K.B. Wolf, A euclidean algebra of hamiltonian observables in Lie optics, Kinam 6, 141–156 (1985).

    Google Scholar 

  22. J.W. Goodman, Introduction to Fourier Optics, (Mc Graw-Hill, New York, 1968), Section 2–3.

    Google Scholar 

Download references

Authors

Editor information

J. Sánchez Mondragón K. B. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Man'ko, V.I., Wolf, K.B. (1986). The influence of spherical aberration on gaussian beam propagation. In: Sánchez Mondragón, J., Wolf, K.B. (eds) Lie Methods in Optics. Lecture Notes in Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16471-5_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-16471-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16471-5

  • Online ISBN: 978-3-540-39811-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics