Skip to main content

Foundations of a Lie algebraic theory of geometrical optics

  • Conference paper
  • First Online:
Lie Methods in Optics

Part of the book series: Lecture Notes in Physics ((LNP,volume 250))

Abstract

We present the foundations of a new Lie algebraic method of characterizing optical systems and computing their aberrations. This method represents the action of each separate element of a compound optical system —including all departures from paraxial optics— by a certain operator. The operators can then be concatenated in the same order as the optical elements and, following well-defined rules, we obtain a resultant operator that characterizes the entire system. These include standard aligned optical systems with spherical or aspherical lenses, models of fibers with polynomial z-dependent index profile, and also sharp interfaces between such elements. They are given explicitly to third aberration order.

We generalize a previous result on the factorization of the optical phase-space transformation due to a refraction interface. We also present a group-theoretical classification for aberrations of any order of systems with axial symmetry, applying it to the problem of combining aberrations; new insights are thus provided on the origin and possible correction of these aberrations. We give a fairly complete catalog of the Lie operators corresponding to various simple optical systems. Finally, there is a brief discussion of the possible merits of constructing a computer code, RAYLIE, for the Lie algebraic treatment of geometric ray optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Dragt, Lie-algebraic theory of geometrical optics and optical aberrations. J. Opt. Soc. America 72, 372–379 (1982).

    Google Scholar 

  2. K. Halbach, Am. J. Phys. 32, 90 (1964); M. Klein, Optics (Wiley, New York, 1970), p. 84; W. Brower, Matrix Methods in Optical Instrument Design (Benjamin, New York, 1964).

    Google Scholar 

  3. A. Ghatak and K. Thyagarajan, Contemporary Optics (Plenum, New York, 1978), p. 15.

    Google Scholar 

  4. M. Hertzberger, Trans. Am. Math. Soc. 53, 218 (1943); O. Stavroudis, The Optics of Rays, Wavefronts, and Caustics (Academic Press, New York, 1978), p. 245.

    Google Scholar 

  5. A.J. Dragt, Lectures in Nonlinear Orbit Dynamics (American Institute of Physics, Conference Proceedings, Vol. 87, 1982).

    Google Scholar 

  6. A.J. Dragt and J. Finn, Lie series and invariant functions for analytic symplectic maps, J. Math. Phys. 17, 2215–2227 (1976).

    Google Scholar 

  7. L.M. Healy, University of Maryland, Department of Physics and Astronomy, Ph.D. Thesis.

    Google Scholar 

  8. M. Born and E. Wolf, Principles of Optics, 2nd Ed., (Macmillan, New York, 1964).

    Google Scholar 

  9. R.K. Luneberg, Mathematical Theory of Optics (University of California Press, 1964).

    Google Scholar 

  10. L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics, Encyclopedia of Mathematics, Vol. 8, Ed. by G. C. Rota (Addison-Wesley, Reading Mass., 1981).

    Google Scholar 

  11. A.J. Dragt and E. Forest, Computation of nonlinear behavior of hamiltonian systems using Lie algebraic methods, J. Math. Phys. 24, 2734–2744 (1983).

    Google Scholar 

  12. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, 1984).

    Google Scholar 

  13. K.B. Wolf, A group-theoretical model for gaussian optics and third order aberrations, in Proceedings of the XII International Colloquium on Group-theoretical Methods in Physics, Trieste, 1983, (Lecture Notes in Physics, Vol. 201, Springer Verlag, 1984), pp. 133–136.

    Google Scholar 

  14. M. Navarro-Saad and K.B. Wolf, Factorization of the phase-space transformation produced by an arbitrary refracting surface. Preprint CINVESTAV, Mexico (March 1984); J. Opt. Soc. Am. (in press).

    Google Scholar 

  15. M. Navarro-Saad and K.B. Wolf, The group theoretical treatment of aberrating systems. I. Aligned lens systems in third aberration order. Comunicaciones Técnicas IIMAS, preprint N° 363 (1984); J. Math. Phys. (in press).

    Google Scholar 

  16. K.B. Wolf, The group theoretical treatment of aberrating systems. II. Axis-symmetric inhomogeneous systems and fiber optics in third aberration order. Comunicaciones Técnicas IIMAS, preprint N° 366 (1984); J. Math. Phys. (in press).

    Google Scholar 

  17. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading Mass., 1980).

    Google Scholar 

  18. K.B. Wolf, Symmetry in Lie optics. Reporte de investigación, Departamento de Matemáticas, Universidad Autónoma Metropolitana, preprint n° 3, 1985 (submitted for publication).

    Google Scholar 

  19. E. Forest, Lie algebraic methods for charged particle beams and light optics, University of Maryland, Department of Physics and Astronomy, Ph. D. Thesis (1984).

    Google Scholar 

  20. M. Navarro-Saad, Cálculo de aberraciones en sistemas ópticos con teoría de grupos, Universidad Nacional Autónoma de México, Facultad de Ciencias, B. Sc. Thesis (1985).

    Google Scholar 

  21. M. Navarro-Saad and K.B. Wolf, Applications of a factorization theorem for ninth-order aberration optics, J. Symbolic Computation 1, 235–239 (1985).

    Google Scholar 

  22. L. Seidel, Zur Dioptik, Astr. Nachr. No 871, 105–120 (1853).

    Google Scholar 

  23. H. Buchdahl, Optical Aberration Coefficients (Dover, New York, 1968).

    Google Scholar 

  24. H. Buchdahl, An Introduction to Hamiltonian Optics (Cambridge University Press, 1970).

    Google Scholar 

  25. H. Buchdahl, J. Opt. Soc. Am. 62, 1314 (1972); ib. Optik 37, 571 (1973); 40, 450 (1974); 46, 287, 393 (1976); 48, 53 (1977).

    Google Scholar 

  26. K.B. Wolf, Approximate canonical transformations and the treatment of aberrations. I. One dimensional simple N th order aberrations in optical systems (preliminary version). Comunicaciones Técnicas IIMAS N° 352 (1983) (unpublished).

    Google Scholar 

  27. D.R. Douglas, University of Maryland, Department of Physics and Astronomy, Ph. D. Thesis (1982).

    Google Scholar 

  28. A. Dragt and D. Douglas, IEEE Trans. Nucl. Sci. NS-30 (1983), p. 2442.

    Google Scholar 

  29. A Dragt, L. Healy et al., MARYLIE 3.0 —A program for nonlinear analysis of accelerator and beamlike lattices. To appear in IEEE Trans. Nucl. Sci. (1985).

    Google Scholar 

  30. A. Dragt, R. Ryne, et al., MARYLIE 3.0 —A program for charged particle beam transport based on Lie algebraic methods. University of Maryland, Department of Physics and Astronomy Technical Report (1985).

    Google Scholar 

  31. A. Dragt and E. Forest, Lie algebraic theory of charged particle optics and electron microscopes. Center for Theoretical Physics, University of Maryland preprint (April 1984). To appear in Advances in Electronics and Electron Physics, Vol. 67, P.W. Hawkes, Ed. (Academic Press, New York, 1988).

    Google Scholar 

  32. M. Hausner and J. Schwartz, Lie Groups, Lie Algebras (Gordon and Breach, 1968).

    Google Scholar 

Download references

Authors

Editor information

J. Sánchez Mondragón K. B. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Dragt, A.J., Forest, E., Wolf, K.B. (1986). Foundations of a Lie algebraic theory of geometrical optics. In: Sánchez Mondragón, J., Wolf, K.B. (eds) Lie Methods in Optics. Lecture Notes in Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16471-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-16471-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16471-5

  • Online ISBN: 978-3-540-39811-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics