Skip to main content

Lie series, Lie transformations, and their applications

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 250))

Abstract

This paper is an exposition of the basic properties of Lie series and Lie transformations, which are now finding widespread applications. The applications are of two types: expanding solutions of Hamilton's equations and reducing (simplifying) Hamiltonians to normal form. The expansions are not power series but rather factored product expansions. These expansions have the advantage that the approximating systems are also hamiltonian. The normal form procedure has the advantage that it is canonical and explicit. In both cases the methods used are chosen so that they are easy to implement in a general purpose computer symbol manipulator.

Partially supported by NSF grant # MCS-8102983 and the U.S. Army Research Office.

This chapter was written by the author using a T-ROFF text processor, and a diskette was sent to the editors, who used the EMACS editor to turn it into a TEX file, half by replace string commands, half by hand. Editorial work consisted of proofreading, formatting, and deepening the segmentation. (Editor's note.)

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General hamiltonian Lie techniques

  1. J.R. Cary, Time dependent canonical transformations and the symmetry equals-invariant theorem. J. Math. Phys. 18, 2432–2435 (1977).

    Google Scholar 

  2. J.R. Cary, Lie transform perturbation theory for Hamiltonian systems. Phys. Rep. 79, 129–159 (1981).

    Google Scholar 

  3. R.A. Howland, An accelerated elimination technique for the solution of perturbed Hamiltonian systems. Celestial Mech. 15, 327–352 (1977).

    Google Scholar 

  4. R.A. Howland and D.L. Richardson, The Hamiltonian transformation in quadratic Lie transforms. Celestial Mech. 32, 99–107 (1984).

    Google Scholar 

  5. A.N. Kaufman, The Lie transform: A new approach to classical perturbation theory. AIP Conf. Proc. 46, 268–295 (1978).

    Google Scholar 

  6. A.J. Laub and K. Meyer, Canonical forms for symplectic and Hamiltonian matrices. Celestial Mech. 9, 213–238 (1974).

    Google Scholar 

  7. S. Lie, Sophus Lie's 1884 Differential Invariants Paper (translated by M. Ackerman, comments by R. Hermann). Math. Sci. Press, Brookline (1976).

    Google Scholar 

  8. S. Lie, Sophus Lie's 1880 Transformation Group Paper (translation by M. Ackerman, comments by R. Hermann). Math. Sci. Press, Brookline (1976).

    Google Scholar 

  9. V.P. Petruk, The use of Lie series to study nonlinear Hamiltonian systems. Cosmic Res. 15, 800–803 (1977).

    Google Scholar 

  10. R. Ramaswamy and R.A. Marcus, On the onset of chaotic motion in deterministic systems. J. Chem. Phys. 74, 1385–1393 (1981).

    Google Scholar 

  11. C.A. Uzes, Mechanical response and the initial value problem. J. Math. Phys. 19, 2232–2238 (1978).

    Google Scholar 

General non-hamiltonian Lie techniques

  1. R.V. Gamkrelidze, Exponential representation of solutions of ordinary differential equations, Equadiff IV. Proc. Czechoslovak Conf. Diff. Egns. and their Appl., Prague (1977).

    Google Scholar 

  2. D.M. Greig and M.A. Abd-El-Naby, Iterative solutions of nonlinear initial value differential equations in Chebyshev series using Lie series. Numer. Math. 34, 1–13 (1980).

    Google Scholar 

  3. D.M. Greig and M.A. Abd-El-Naby, A series method for solving nonlinear two-point boundary value problems. Numer. Math. 34, 87–98 (1980).

    Google Scholar 

  4. M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear functional expansions. IEEE Pans. on Circuits and Systems CAS-30, 554–570 (1983).

    Google Scholar 

  5. W. Gröbner, Die Lie-Reihen and ihre Anwendungen. VEB Deutscher Verlag der Wissenschaften, Berlin (1960).

    Google Scholar 

  6. W. Gröbner and H. Knopp, Contributions to the Method of Lie Series. Bibliographisches Institut, Mannheim (1967).

    Google Scholar 

  7. L. Hlavatý, S. Steinberg, and K.B. Wolf, Riccati equations and Lie series. J. Math. Anal. 104, 246–263 (1984).

    Google Scholar 

  8. C.R. Hebd, Development of indeterminate non-commutative functions of solutions to differential equations for nonlinear forces. Seances Acad. Sci. A287, 1133–1135 (1978).

    Google Scholar 

  9. R.A. Howland, A quadratic transformation technique for the solution of nonlinear systems. SIAM J. Math. Anal. 12, 90–103 (1981).

    Google Scholar 

  10. H. Knapp and G. Wanner, Numerical solution of ordinary differential equations by Groebner's method of Lie-series. Math. Research Center, Univ. of Wisconsin, Madison (1968).

    Google Scholar 

  11. K. Ludwig, Topologische Gruppen von Lie-Reihen. Wiss. Z. Hochsch. Verkehrswesen Friedrich List, Dresden 27, 799–808 (1980).

    Google Scholar 

  12. J.A. Mitropolsky, Sur la decomposition asymptotique des systemes differentiels fondée sur des transformations de Lie. Proc. Internat. Conf. Nonlinear Diff. Eqns., 283–326. Trento (1980). Academic Press, New York (1981).

    Google Scholar 

  13. J.F. McGarvey, Approximating the general solution of a differential equation. Classroom Notes in Applied Mathematics, SIAM Review 24, 333–337 (1982).

    Google Scholar 

  14. J. Murdock, A unified treatment of some expansion procedures in perturbation theory. Lie series FAA Di Bruno operators, and Arbogast's rule. Celestial Mech. 30, 293–295 (1983).

    Google Scholar 

  15. S. Steinberg, Local Propagators. Rocky Mountain J. Math. 10, 767–798 (1980).

    Google Scholar 

  16. S. Steinberg, Lie series and nonlinear ordinary differential equations. J. Math. Anal. Appl. 101, 39–63 (1984).

    Google Scholar 

  17. S. Steinberg, Factored product expansions of solutions of nonlinear differential equations. SIAM J. Math. Anal. 15, 108–115 (1984).

    Google Scholar 

Baker-Campbell-Hausdorff relations

  1. D. Finkelstein, On relations between commutators. Comm. Pure Appl. Math. 8, 245–250 (1955).

    Google Scholar 

  2. E.Q. Cora, On formulas in closed form for van Vleck expansions. Inter. J. Quant. Chem. 6, 681–700 (1972).

    Google Scholar 

  3. W. Magnus, On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7, 649–573 (1954).

    Google Scholar 

  4. R.D. Richtmeyer and S. Greenspan, Expansions of the Campbell-Baker-Hausdorff formula by computer. Comm. Pure Appl. Math. 18, 107–108 (1965).

    Google Scholar 

  5. S. Steinberg, Applications of the Lie algebraic formulas of Baker, Campbell, Hausdorff, and Zassenhaus to the calculation of explicit solutions of partial differential equations. J. Diff, Eqns. 28, 404–434 (1977).

    Google Scholar 

  6. J. Wei and E. Norman, On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Amer. Math. Soc. 15, 327–334 (1964).

    Google Scholar 

  7. K.B. Wolf, On time-dependent quadratic quantum Hamiltonians. SIAM J. Appl. Math. 40, 419–431 (1981).

    Google Scholar 

Celestial mechanics

  1. K. Aksnes, On the choice of reference orbit, canonical variables, and perturbation method in satellite theory. Celestial Mech. 8, 259 (1973).

    Google Scholar 

  2. K.T. Alfriend, A nonlinear stability problem in the three dimensional restricted three body problem. Celestial Mech. 5, 502–511 (1972).

    Google Scholar 

  3. Richard B. Barrar, On the non-existence of transformations to normal form in celestial mechanics. G.E.O. Giacaglia (Editor), Periodic Orbits, Stability and Resonance, Reidel, Dordrecht, 228–231 (1970).

    Google Scholar 

  4. N. Burgoyne and R. Cushman, Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues. Celestial Mech. 8, 435–443 (1974).

    Google Scholar 

  5. J.A. Campbell and W.H. Jefferys, Equivalents of the perturbation theories of Hori and Deprit. Celestial Mech. 2, 467–473 (1970).

    Google Scholar 

  6. H. Claes, Analytical theory of earth's artificial satellites. Celestial Mech. 21, 193–198 (1980).

    Google Scholar 

  7. J.E. Cochran, Long-term motion in a restricted problem of rotational motion (artificial satellites). B.D. Tapley, V. Szebehely (Editors), Recent Advances in Dynamcal Astronomy, Reidel, Dordrecht, 429–453 (1973).

    Google Scholar 

  8. S. Coffey and K.T. Alfriend, Short period elimination for the tesseral harmonics. AAS/AIAA Astrodynamics Spec. Conf., Lake Tahoe, Nevada (1981).

    Google Scholar 

  9. C.J. Cohen and R.H. Lyddane, Radius of convergence of Lie series for some elliptic elements. Celestial Mech. 25, 221–234 (1981).

    Google Scholar 

  10. A. Deprit, Canonical transformations depending on a small parameter. Celestial Mech. 1, 12–30 (1969).

    Google Scholar 

  11. A. Deprit, The main problem of artificial satellite theory for small and moderate eccentricities. Celestial Mech. 2, 166–206 (1970).

    Google Scholar 

  12. A. Deprit, J. Henrard, J.F. Price, and A. Rom, Birkhoff's normalization. Celestial Mech. 1, 222–251 (1969).

    Google Scholar 

  13. G. Dulinski, The rotational motion of the natural and artificial celestial bodies. I. Postepy Astron. 29, 3–15 (1981).

    Google Scholar 

  14. R. Dvorak and A. Hanslmeir, Numerical integration with Lie-series. S. Ferraz-Mello, P.E. Nacozy (Editors), Motion of Planets and natural and Artificial Satellites, Proc. of a CNPQ-NSF Symp. and Workshop, 65–72 (1983).

    Google Scholar 

  15. S. Filippi, A new Lie series method for the numerical integration of ordinary differential equations, with an application to the restricted problem of three bodies. Technical Report NASATN-D-3857 (1967).

    Google Scholar 

  16. B. Garfinkel, A. Jupp, and C. Williams, A recursive Von Zeipel algorithm for the ideal resonance problem. Astronomical J. 76, 157–166 (1971).

    Google Scholar 

  17. F. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilibrium point. Astronomical J. 71, 670–686 (1966).

    Google Scholar 

  18. J. Henrard and J. Reels, Equivalence for Lie transforms. Celestial Mech. 10, 497–512 (1974).

    Google Scholar 

  19. J. Henrard and M. Moons, Hamiltonian theory of the libration of the Moon. V. Szebehely (Editor), Dynamics of Planets and Satellites and Theories of Their Motion, Proc. of the 41st Colloq. of the International Astronomical Union, Cambridge (1976), Dordrecht (1978), 125–135.

    Google Scholar 

  20. K.V. Holshevnikov, Short-period perturbations of the state vector in the method of Lie transforms. Leningrad. Gos. Univ. Uchen. Zap. 402, Ser. Mat. Nauk Vyp. 48, Trudy Astronom. Obser. 36, 124–134 (1981).

    Google Scholar 

  21. G. Hori, Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Japan 18, 287–296 (1966).

    Google Scholar 

  22. G. Hori, Theory of general perturbations. B.B. Tapley, V. Szebehely (Editors), Recent Advances in Dynamical Astronomy, Reidel, Dordrecht, 231–249 (1973).

    Google Scholar 

  23. A.H. Jupp, A comparison of the Bohlin-Von Zeipel and Bohlin-Lie series methods in resonant systems. Celestial Mech. 26, 413–422 (1982).

    Google Scholar 

  24. A.A. Kamel, Perturbation methods in the theory of nonlinear oscillations. Celestial Mech. 3, 90–106 (1970).

    Google Scholar 

  25. B. Kaufman, K.T. Alfriend, and R.R. Dasenbrock, Luni-solar perturbations in the extended phase space representation of the Vinti problem. Acta Astronuatica 5, 727–744 (1978).

    Google Scholar 

  26. B. Kaufman, First order semianalytic satellite theory with recovery of the short period terms due to third body and zonal perturbations. Acta Astronautica 8, 611–623 (1981).

    Google Scholar 

  27. B. Kaufman and W.H. Harr, Implementation of a semianalytic satellite theory with recovery of short period terms. Acta Astronautica 11, 279–286 (1984).

    Google Scholar 

  28. U. Kirchgraber, The property of covariance in Hori's noncanonical perturbation theory. B. B. Tapley, V. Szebehely (Editors), Recent Advances in Dynamical Astronomy, Riedel, Dordrecht, 260–261 (1973).

    Google Scholar 

  29. D.Z. Koenov, Solution of canonical equations of perturbed translational-rotational motion of a planet and its satellite by the method of Lie transforms. Izv. Akad. Nouk Tadzhik. SSR, otdel Fiz.-Mat. Khim. i Geol. Nauk 83, 47–54 (1982).

    Google Scholar 

  30. D.J. Lelgemann, A linear solution of the equations of motion of an earth-orbiting satellite based on Lie-series. Celestial Mech. 30, 309–321 (1983).

    Google Scholar 

  31. Liu Lin, Several notes on the transformation methods in non-linear systems. Acta Astron. Sin. 23, 255–263 (1982).

    Google Scholar 

  32. B. McNamara, Super-convergent adiabatic invariants with resonant denominators by Lie series transforms. J. Math. Phys. 19, 2154–2164 (1978).

    Google Scholar 

  33. J. Meffroy, On the elimination of short-period terms in second-order general planetary theory investigated by Hori's method. Astrophys, and Space Sci. 25, 271–354 (1973).

    Google Scholar 

  34. W.A. Mersman, Explicit recursive algorithms for the construction of equivalent canonical transforms. Celestial Mech. 3, 384–389 (1971).

    Google Scholar 

  35. P.J. Message, Asymptotic series for planetary motion in periodic terms in three dimensions. Celestial Mech. 26, 25–39 (1982).

    Google Scholar 

  36. K.R. Meyer, Normal forms for Hamiltonian systems. Celestial Mech. 9, 517–522 (1974).

    Google Scholar 

  37. P. Michaelidis, Orbits near a 2/3 resonance. Astronom. and Astrophys. 91, 165–174 (1980).

    Google Scholar 

  38. B.A. Romanowicz, On the tesseral-harmonics resonance problem in artificial-satellite theory. Report, Smithsonian Inst. Astrophys Obs., Cambridge (1975).

    Google Scholar 

  39. D.S. Schmidt, Literal solution for Hill's lunar problem. Celestial Mech. 19, 279–289 (1979).

    Google Scholar 

  40. Harold Shniad, The equivalence of Von Zeipel mappings and the Lie transforms. Celestial Mech. 2, 114–120 (1970).

    Google Scholar 

  41. M. Sidlichovsky, The inclination changes in the problem of two triaxial rigid spheroids. Celestial Mech. 22, 343–355 (1980).

    Google Scholar 

  42. F. Spirig, Algebraic aspects of perturbation theories. Celestial Mech. 20, 343–354 (1979).

    Google Scholar 

  43. D. Standaert, Direct perturbations of the planets on the Moon's motion. Celestial Mech. 22, 357–369 (1980).

    Google Scholar 

  44. K. Stumpff, On the application of Lie-series to the problems of celestial mechanics. Nasa Technical Note NASA TN D-446O (1968).

    Google Scholar 

Magnetic optics

  1. D.R. Douglas and A.J. Dragt, Lie algebraic methods for particle tracking calculations. IEEE Trans. Nuc. Sci NS-28, 2522 (1981).

    Google Scholar 

  2. A.J. Dragt and J.M. Finn, Lie series and invariant functions for analytic symplectic maps. J. Math. Phys. 17, 2215–2227 (1976).

    Google Scholar 

  3. A.J. Dragt, A method of transfer maps for linear and nonlinear beam elements. IEEE Transactions on Nuclear Science NS-26, 3601–3603 (1979).

    Google Scholar 

  4. A.J. Dragt and J.M. Finn, Normal form for mirror machine Hamiltonians. J. Math. Phys. 20, 2649–2660 (1979).

    Google Scholar 

  5. A.J. Dragt, Transfer map approach to the beam-beam interaction. Proc. of Symp. on Nonlinear Dynamics and the Beam-Beam Interaction, Brookhaven National Laboratory (1979).

    Google Scholar 

  6. A.J. Dragt and O.G, Jakubowicz, Analysis of the beam-beam interaction using transfer maps. Preprint, Dept. of Physics and Astronomy, Univ. of Maryland (1980).

    Google Scholar 

  7. A.J. Dragt, Charged particle beam transport using Lie algebraic methods. To appear in IEEE transactions on Nuclear Science.

    Google Scholar 

  8. A.J. Dragt, Lectures on nonlinear orbit dynamics. AIP Conference Proceedings 87 (1982).

    Google Scholar 

  9. A.J. Dragt and E. Forest, Computation of nonlinear behavior of Hamiltonian systems using Lie algebraic methods. J. Math. Phys. 24, 2734–2744 (1984).

    Google Scholar 

  10. J.M. Finn, Integral of Canonical Transformations and Normal Forms for Mirror Machine Hamiltonians. Thesis, Univ. Maryland, College Park.

    Google Scholar 

Light optics

  1. A.J. Dragt, A Lie algebraic theory of geometrical optics and optical aberrations. J. Opt. Soc. America 72, 372–379 (1982).

    Google Scholar 

  2. J.C. Garrison and J. Wong, Corrections to the adiabatic approximation for variable parameter free-electron laser. IEEE J. Quantum Electron QE-17, 1489–1475 (1981).

    Google Scholar 

  3. J.C. Garrison and J. Wong, Nonadiabatic corrections and detrapping for variable parameter free-electron lasers. S.F. Jacobs et al. (Editors), Free-Electron Generators of Coherent Radiation, 3rd Workshop of Free-Electron Laser Devices, Sun Valley, Idaho, 349–365 (1982).

    Google Scholar 

  4. M. Navarro-Saad and K.B. Wolf, The group-theoretical treatment of aberrating systems. I. Aligned lens systems in third aberration order. Comunicaciones Técnicas IIMAS No 363 (1984). To appear in J. Math. Phys. (March 1986).

    Google Scholar 

  5. K.B. Wolf, Approximate canonical transformations and the treatment of aberrations. I. One-dimensional simple n-th order aberrations in optical systems. Comunicaciones Técnicas IIMAS No 352 (1983). (Preliminary version.)

    Google Scholar 

  6. K.B. Wolf, The group-theoretical treatment of aberration system. 11. Axis-symmetric inhomogeneous systems and fiber optics in third aberration order. Comunicaciones Técnicas IIMAS No 366 (1984). To appear in J. Math. Phys. (March 1986).

    Google Scholar 

  7. K.B. Wolf, On the group-theoretical treatment of Gaussian optics and third-order aberrations. Proc, of the XII Internat. Colloq. on Group-Theoretical Meth. in Phys., Trieste (1983). Lecture Notes in Physics, Vol. 201, (Springer Verlag, 1984); pp. 133–136.

    Google Scholar 

Neutron transport

  1. T. Auerbach, W. Halg, and J. Mennig, The treatment of boundary value problems in optically thick media by means of Lie series. Nucl. Sci. and Eng. 49, 384–387 (1972).

    Google Scholar 

  2. T. Auerbach, J.P. Gandillon, W. Halg, and J. Mennig, Analytical solution of s4-equations in plane geometry. Comput. Methods Appl. Mech. Eng. 2, 133–146 (1973).

    Google Scholar 

  3. R.A. Axford, Integral-transform Lie-series analysis of transient temperatures in reactor coolant channels. Technical report, Los Alamos National Laboratory (1967).

    Google Scholar 

  4. G.H. Cristea, Application of Lie series to resolve the time dependent Boltzmann equation in the diffusion approximation. Technical Report, Inst. Atomic Phys., Bucharest (1973).

    Google Scholar 

  5. T. Juillearat, A three-dimensional multigroup p l -theory with axially variable parameters. Nukleonik 12, 117–124 (1969).

    Google Scholar 

  6. V.P. Korennoi and O.V. Khatkevich, Use of the Lie-series method for calculating neutron flux anisotropy in the multi-group p l -approximation for a flat heterogeneous reactor cell. Vestsi Akad. Navuk BSSR Ser. Fiz. Energ. Navuk 4, 10–14 (1984).

    Google Scholar 

  7. M. Lemanska, Y. Ilamed, and S. Yiftah, The theory of a one-dimensional bare reactor, treated by the Lie series method. J. Nuclear Energy 23, 361–367 (1969).

    Google Scholar 

  8. M. Lemanska, The solution of the multi-dimensiona, multi-group diffusion equation using the Lie series method for a bare reactor. J. Nucl. Energy 25, 397–403 (1971).

    Google Scholar 

  9. M. Lemanska, Exact solution of p n time-dependent equations with time-dependent cross-sections for slab geometry. Z. Angw. Math. and Phys. 26, 701–711 (1975).

    Google Scholar 

  10. C. Lepori, T. Auerbach, W. Halg, and J. Mennig, Analytical solution of the position-dependent planar neutron transport problem, taking into account anisotropic scatter and several energy groups. Z. Angew. Math. and Phys. 25, 132–135 (1974).

    Google Scholar 

  11. A. Zurkinden, Time dependent neutron transport theory in multigroup p l -approximation. Z. Angew. Math. and Phys. 28, 393–408 (1977).

    Google Scholar 

Plasma physics

  1. J.R. Cary and A.N. Kaufman, Pondermotive effects in collisionless plasma: A Lie transform approach. Phys. Fluids 24, 1238–1250 (1981).

    Google Scholar 

  2. J.R. Cary and R.G. Littlejohn, Noncanonical Hamiltonian mechanics and its application to magnetic field line flow. Ann. Phys. 151, 1–34 (1983).

    Google Scholar 

  3. S. De, Explosive instabilities in beam plasma system. Plasma Phys. 24, 1043–1050 (1982).

    Google Scholar 

  4. D.H.E. Dubin, J.A. Krommes, C. Oberman, and W.W. Lee, Nonlinear gyrokinetic equations. Phys. Fluids 26, 3524–3535 (1983).

    Google Scholar 

  5. T. Hatori and H. Washimi, Covariant form of the pondermotive potentials in a magnetized plasma. Phys. Rev. Lett. 46, 240–242 (1981).

    Google Scholar 

  6. S. Johnston and A.N. Kaufman, Oscillation centres and mode coupling in non-uniform Vlasov plasma. J. Plasma Phys. 22, 105–119 (1979).

    Google Scholar 

  7. A.N. Kaufman, J.R. Cary, and N. R. Pereira, Universal formula for quasi-static density perturbation by a magnetoplasma wave. Phys. Fluids 22, 790–791 (1979).

    Google Scholar 

  8. R.G. Littlejohn, A guiding center Hamiltonian: A new approach. J. Math. Phys. 20, 2445–2458 (1979).

    Google Scholar 

Other applications

  1. R.K. Bansal and R. Subramanian, Stability analysis of power systems using Lie series and pattern-recognition techniques. Proc. Inst. Electr. Eng. 121, 623–629 (1974).

    Google Scholar 

  2. R.K. Bansal, R. Subramanian, H. Kormanik, and C.C. Li, Comments on ‘Decision-surface estimate of nonlinear system stability domain by Lie series method'. IEEE Trans. Autom. Control AC-19, 629–630 (1974).

    Google Scholar 

  3. D.J. Bell and Q. Ye, A perturbation method for suboptimal feedback control of bilinear systems. Int. J. Syst. Sci. 12, 1157–1168 (1981).

    Google Scholar 

  4. G.H. Cristea, The study of the operating mechanism of Lie series to solve the forward Kolmogorov equation. Technical Report, Inst. Atomic Phus., Bucharest (1973).

    Google Scholar 

  5. J.D. Curtis, A Modification of the Brown-Shook Method Based on Lie Series. Thesis, Univ. Maryland, Catensville.

    Google Scholar 

  6. R.L. Dewar, Renormalized canonical perturbation theory for stochastic propagators. J. Phys. A9, 2043–2057 (1976).

    Google Scholar 

  7. R.L. Dewar, Exact oscillation-centre transformations. J. Phys. A11, 9–26 (1978).

    Google Scholar 

  8. T.K. Hu and J.C. Zink, Lie series perturbation solution of the invariant imbedding reflection equations. Traps. Am. Nucl. Soc. 18, 146–147 (1974).

    Google Scholar 

  9. J. Kormanik and C.C. Li, Decision surface estimate of nonlinear system stability domain by Lie series method. IEEE Trans. Autom. Contr. AC-17, 666–669 (1972).

    Google Scholar 

  10. J. Kormanik and C.C. Li, On an algorithm for estimating uniform asymptotic stability boundary of nonautonomous system. Proc. of the 1976 IEEE Conf. on Decision and Control Incl. the 15th Symp. on Adaptive Proc., IEEE (1976).

    Google Scholar 

  11. K. Normuratov, Averaging of integro-differential equations using Lie series. Izv. Akad. Nauk UZSSR Ser. Fiz.-Mat. Nauk, 6–9 (1983).

    Google Scholar 

  12. R. Raczka, Integration of classical nonlinear relativistic equations by the method of Lie series. Acta Phys. Pol. B4, 501–520 (1973).

    Google Scholar 

  13. J. Rae, Subdynamits in classical mechanics. B.B. Tapley, V. Szebehely (Editors), Recent Advances in Celestial Astronomy, Reidel, Dordrecht, 262–269 (1973).

    Google Scholar 

  14. H.J. Sussmann, Lie brackets and local controllability: A sufficient condition for scalar-input systems. SIAM J. Control and Optimiz. 21, 686–713 (1983).

    Google Scholar 

  15. V.F. Zhuravlev, Method of Lie series in the motion-separation problem in nonlinear mechanics. Appl. Math. Meth. 47, 461–466 (1983).

    Google Scholar 

Symbol manipulation

  1. R.A. Broucke, A FORTRAN-4 system for the manipulation of symbolic Poisson series with applications to celestial mechanics. Preprint, Institute for Advanced Study in Orbital Mechanics, Univ. of Texas at Austin (1980).

    Google Scholar 

  2. B. Char, LIEPROC: A MACSYMA program for finding adiabatic invariants of simple Hamiltonian systems via the Lie transform. E. Lewis (Editor), Proc. of the 1979 MACSYMA Users Conference.

    Google Scholar 

  3. Bruce Char and Brendon McNamara, LCPT: A program for finding linear canonical transformations. E. Lewis (Editor), Proc. of the 1979 MACSYMA Users Conference.

    Google Scholar 

  4. A. Giorgilli, A computer program for integrals of motion. Computer Phys. Comm. 16, 331–343 (1979).

    Google Scholar 

  5. MACSYMA Reference Manual, Project MAC Mathlab Group, M.I.T. (July 1977).

    Google Scholar 

  6. R. Pavelle, M. Rothstein, and J. Fitch, Computer algebra, Scientific American 245 8 (Dec. 1981).

    Google Scholar 

  7. D.R. Stoutemyer, Symbolic computation comes of age. SIAM News 12 (1979).

    Google Scholar 

Texts

  1. G.D. Birkhoff, Dynamical Systems, Colloquium Publications, Vol. 9. American Math. Soc., New York (1927).

    Google Scholar 

  2. G.E.O Giacaglia, Perturbation Methods in Non-Linear Systems. Springer-Verlag, New York (1972).

    Google Scholar 

  3. H. Goldstein, Classical Mechanics 2nd Ed. Addison-Wesley, Reading (1950).

    Google Scholar 

  4. E. Leimanis, The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer-Verlag, New York (1965).

    Google Scholar 

  5. A.H. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion. Springer-Verlag, New York (1983).

    Google Scholar 

  6. A.H. Nayfeh, Perturbation Methods. Wiley, New York (1973).

    Google Scholar 

  7. B.G. Wybourne, Classical Groups for Physicists. Wiley, New York (1974).

    Google Scholar 

Download references

Authors

Editor information

J. Sánchez Mondragón K. B. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Steinberg, S. (1986). Lie series, Lie transformations, and their applications. In: Sánchez Mondragón, J., Wolf, K.B. (eds) Lie Methods in Optics. Lecture Notes in Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16471-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-16471-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16471-5

  • Online ISBN: 978-3-540-39811-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics