Non-local conservation laws for non-linear sigma models with fermions

  • Michael Forger
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 246)


Effective Field Theory Matter Field Composite Field Riemannian Symmetric Space Vector Bundle Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    M. Gell-Mann and M. Levy, Nuovo Cim. 16 (1960) 705–726.Google Scholar
  2. 2).
    S. Weinberg, Phys. Rev. 166 (1968) 1568–1577.Google Scholar
  3. 3).
    B.W. Lee, “Chiral Dynamics”, Gordon and Breach, New York (1972).Google Scholar
  4. 4).
    W. Buchmüller, S.T. Love, R.D. Peccei and T. Yanagida, Phys. Lett. 115B (1982) 233–236Google Scholar
  5. 4a).
    W. Buchmüller, R.D. Peccei and T. Yanagida, Phys. Lett. 124B (1983) 67–73Google Scholar
  6. 4b).
    W. Buchmüller, R.D. Peccei and T. Yanagida, Nucl. Phys. B227 (1983) 503–546; B231 (1984) 53–64; B244 (1984) 386–206.Google Scholar
  7. 5).
    E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141–212.Google Scholar
  8. 6).
    M. Forger, “Instantons in Non-Linear a Models, Gauge Theories and General Relativity”, in: Differential Geometrical Methods in Mathematical Physics, Proceedings, Clausthal, Germany 1978, ed. by H.D. Doebner, Lecture Notes in Physics, Vol. 139 (Springer Verlag, Berlin-Heidelberg-New-York, 1981).Google Scholar
  9. 7).
    M. Forger, “Differential Geometric Methods in Non-Linear σ Models and Gauge Theories”, Ph.D. Thesis, Freie Universität Berlin, unpublished (1980).Google Scholar
  10. 8).
    M. Dubois-Violette and Y. Georgelin, Phys. Lett. 82B (1979) 251–254Google Scholar
  11. 8a).
    A.M. Polyakov, Phys. Lett. 82B (1979) 247–250.Google Scholar
  12. 9).
    A.M. Polyakov, Phys. Lett. 59B (1975) 79–81Google Scholar
  13. 9a).
    E. Brézin, S. Hikami and J. Zinn-Justin, Nucl. Phys. B165 (1980) 528–544.Google Scholar
  14. 10).
    D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343–1346Google Scholar
  15. 10a).
    H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346–1349.Google Scholar
  16. 11).
    A. D'Adda, P. Di Vecchia and M. Lüscher, Nucl. Phys. B146 (1978) 63–76; B152 (1979) 125–144.Google Scholar
  17. 12).
    M. Lüscher, Nucl. Phys. B135 (1978) 1–19.Google Scholar
  18. 13).
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Nucl. Phys. B133 (1978) 525–535.Google Scholar
  19. 14).
    K. Pohlmeyer, Commun. Math. Phys. 46 (1976) 207–221Google Scholar
  20. 14a).
    M. Lüscher and K. Pohlmeyer, Nucl. Phys. B137 (1978) 46–54Google Scholar
  21. 14b).
    V.E. Zakharov and A.V. Mikhailov, Sov. Phys. JETP 47 (1978) 1017–1027.Google Scholar
  22. 15).
    H. Eichenherr and M. Forger, Nucl. Phys. B155 (1979) 381–393; B164 (1980) 528–535; Commun. Math. Phys. 82 (1981) 227–255.Google Scholar
  23. 16).
    H. Eichenherr, “Geometric Analysis of Integrable Non-Linear a Models”, in: Integrable Quantum Field Theories, Proceedings, Tvärminne, Finland 1981, ed. by J. Hietarinta and C. Montonen, Lecture Notes in Physics, Vol. 151 (Springer Verlag, Berlin-Heidelberg-New York, 1982).Google Scholar
  24. 17).
    M. Forger, “Non-linear a Models on Symmetric Spaces”, in: Non-Linear Partial Differential Operators and Quantization Procedures, Proceedings, Clausthal Germany 1981, ed. by S.I. Andersson and H.D. Doebner, Lecture Notes in Mathematics, Vol. 1037 (Springer Verlag, Berlin-Heidelberg-New York, 1983).Google Scholar
  25. 18).
    E. Abdalla, M. Forger and M. Gomes, Nucl. Phys. B210 [FS6] (1982) 181–192.Google Scholar
  26. 19).
    E. Abdalla and M. Forger, “Integrable Non-Linear a Models with Fermions, CERN preprint TH.4238/85 (1985), to appear in Commun. Math. Phys.Google Scholar
  27. 20).
    E. Abdalla, M.C.B. Abdalla and M. Gomes, Phys. Rev. D27 (1983) 825–836.Google Scholar
  28. 21).
    E. Abdalla, M. Forger and A. Lima-Santos, Nucl. Phys. B256 (1985) 145–180.Google Scholar
  29. 22).
    E. Abdalla, “Non-Linear a Models. A Geometrical Approach to Quantum Field Theory”, in: Non-linear Equations in Classical and Quantum Field Theory, Proceedings, Meudon-Paris, France 1983/84, ed. by N. Sanchez, Lecture Notes in Physics, Vol. 226 (Springer Verlag, Berlin-Heidelberg-New York, 1985).Google Scholar
  30. 23).
    S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces”, (Academic Press, New York, 1978).Google Scholar
  31. 24).
    S. Aoyama, Nuovo Cim. 57A (1980) 176–184.Google Scholar
  32. 25).
    A.M. Polyakov and P.B. Wiegmann, Phys. Lett. 131B (1983) 121–126Google Scholar
  33. 25a).
    P.B. Wiegmann, Phys. Lett. 141B (1984) 217–222; 152B (1985) 209–214.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Michael Forger
    • 1
  1. 1.CERNTheory DivisionGeneva 23Switzerland

Personalised recommendations