Advertisement

Monopoles and-reciprocity

  • S. Corrigan
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 246)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Atiyah, V.G. Drinfeld, N.J. Hitchin and Yu.I. Manin, Phys. Letts. 65A (1978) 195.Google Scholar
  2. 1a.
    V. G. Drinfeld and Yu.I. Manin, Commun. Math. Phys. 63 (1976) 177.Google Scholar
  3. 1b.
    M.F. Atiyah, “Geometry of Yang-Mills Fields”, Lezione Fermioni, Pisa 1979.Google Scholar
  4. 2.
    W. Nahm, Phys. Letts. 906 (1980) 413.Google Scholar
  5. 2a.
    “Multimonopoles in the ADHM construction.” In: Proceedings of the Symposium on Particle Physics. Z. Horvath et al., eds., Visegrad 1981.Google Scholar
  6. 2b.
    “Construction of all self-dual monopoles by the ADHM method.” In: Monopoles and Quantum Field Theory. N.S. Craigie et al., eds., Singapore: World Scientific 1982.Google Scholar
  7. 2c.
    “The algebraic geometry of multimonopoles”, Group Theoretical Methods in Physics, Istanbul 1982.Google Scholar
  8. 3.
    N.J. Hitchin, Commun. Math. Phys. 89 (1983) 145.Google Scholar
  9. 4.
    E. Corrigan and P. Goddard, Ann. Phys. (NY) 154 (1984) 253.Google Scholar
  10. 5.
    W. Nahm, “Self-dual monopoles and calorons.” Talk at the XII Colloquium on Group Theoretical Methods in Physics. Treste, 1983.Google Scholar
  11. 6.
    C. Taubes, Commun. Math. Phys. 86 (1982) 257.Google Scholar
  12. 7.
    E.B. Bogomolny Sov. J. Nuclear Phys. 24 (1976) 449.Google Scholar
  13. 7a.
    M.K. Prasad and C.M. Sommerfield, Phys. Rev. Letts. 35 (1975) 760Google Scholar
  14. 8.
    E. Weinberg, Phys. Rev. 20 (1979) 936.Google Scholar
  15. 9.
    R.S. Ward, Commun. Math. Phys. 79 (1981) 317.Google Scholar
  16. 9a.
    Phys. Letts. 102B (1981) 136.Google Scholar
  17. 10.
    E. Corrigan and P. Goddard, Commun. Math. Phys. 80 (1981) 575.Google Scholar
  18. 11.
    N.J. Hitchin, Commun. Math. Phys. 83 (1982) 579.Google Scholar
  19. 12.
    C. Callias, Commun. Math. Phys. 62 (1978) 213.Google Scholar
  20. 13.
    S. Donaldson, Commun. Math. Phys. 93 (1984) 453.Google Scholar
  21. 13a.
    , Commun. Math. Phys. 176 (1984) 387.Google Scholar
  22. 14.
    N. Manton, Phys. Letts. 110B (1982) 54.Google Scholar
  23. 14a.
    “Monopole interactions at long range”, Cambridge preprint 1985.Google Scholar
  24. 15.
    M.F. Atiyqh and N.J. Hitchin, Phys. Letts 107A (1985) 21.Google Scholar
  25. 16.
    E. Corrigan, P.R. Wainwright and S.M.J. Wilson, Commun. Math. Phys. 98 (1985) 259.Google Scholar
  26. 17.
    E.S. Nikolaevski and L.N. Schur, JETP Letts. 36 (1982) 218.Google Scholar
  27. 17a.
    G.K. Savviddy, Phys. Letts. 130B (1983) 303.Google Scholar
  28. 17b.
    S.J. Chang Phys. Rev. D20 (1984) 259.Google Scholar
  29. 18.
    A.M. Din and W.J. Zakrzeewski, Nucl. Phys. 174B (1980) 397.Google Scholar
  30. 18a.
    W.J. Zakrzewski, Classical solutions to CPn−1 models and their generalisations”, Lecture Notes in Physics 151 (Springer-Verlag, 1982).Google Scholar
  31. 19.
    A. d'Adda, P. diVecchia and M. Luscher, Nucl. Phys. 146B (1978) 63.Google Scholar
  32. 20.
    M.C. Bowman, E. Corrigan, P. Goddard, A. Puaca and A. Soper, Phys. Rev. D12 (1984) 3100.Google Scholar
  33. 21.
    W. Nahm, Phys. Letts. 93B (1980) 42.Google Scholar
  34. 22.
    E. Corrigan, “Some comments on a cubic: algebra”, invited talk, Srni Czechoslovakia, 1985, to appear in Circolo Matematico di Palermo.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • S. Corrigan
    • 1
  1. 1.Department of Mathematical SciencesDurhamUK

Personalised recommendations