Skip to main content

Epoxy-aromatic amine networks in the glassy state structure and properties

  • Conference paper
  • First Online:
Epoxy Resins and Composites IV

Part of the book series: Advances in Polymer Science ((POLYMER,volume 80))

Abstract

Properties of networks, prepared by curing of diglycidyl ethers of bisphenols with some aromatic amines, have been considered. Network polymers, obtained from mixtures with different reactant ratios and at different curing temperatures (Tcure), have been chemically characterized (curing conversion, concentration of chemical crosslinks) in detail at all stages of the cure process. Polymer properties, i. e. mechanical features such as rigidity and deformability and thermal features such as Tg, heat capacity, and coefficient of thermal expansion, have been analyzed and interpreted in terms of chemical and physical (packing density) structure. Plastic deformation and some fracture peculiarities of network glasses have been examined. In a few cases, the properties of these polymers in the rubbery state have been considered. A comparison of the structure and properties of network and linear polymeric glasses has been made. It has been shown that, in the formation of the structure and properties of these polymers, an important role is played by vitrification during cure. Polymers prepared at low Tcure usually show higher mechanical properties which, however, are not due to the high density of their glassy state. The peculiarities of the mechanical behaviour and vitrification of polymers isothermally cured at different Tcure have been considered.

λ=1+ε

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

α:

reaction conversion

αdif :

diffusion conversion limit

αtop :

topological conversion limit

AN:

aniline

βg :

cubic thermal expansion coefficient of the glassy state

βl :

cubic thermal expansion coefficient of the liquid state

Δβ(Tg):

thermal expansion coefficient jump at Tg

Cp :

heat capacity

ΔCp(Tg):

heat capacity jump at Tg

DGER:

diglycidyl ether of resorcinol

DGEBA:

diglycidyl ether of Bisphenol-A

DGEOPH:

diglycidyl ether of orthophthalic acid

DGEPC:

diglycidyl ether of pyrocathechol

DGEHHPH:

diglycidyl ether of hexahydrophthalic acid

DADMOPHM:

diaminodimethoxyphenylmethane

4,4′-DADPhS:

4,4′-diaminodiphenyl sulfone

Epol :

electric polarization field

E,E′:

Young modulus; dynamic Young modulus

ε:

relative deformation

εb :

elongation at break

ε*:

maximum local elongation

εy :

elongation at yield

G:

shear modulus

G∞ :

equilibrium shear modulus

Kc :

rigidity modulus of a network molecular chain

K20 :

packing density coefficient at 20 °C

L⊥, L∥ :

length of plastic deformation zone in the front of crack tip (⊥ and ‖ the tension direction)

m-PhDA:

m-phenylenediamine

μ:

dipole moment

N:

number of dipoles

N(x):

number of crosslinks (m-PhDA molecules) with different

x=0÷4:

connectivity (x) of the crosslink with entire network

P:

initial molar ratio of reactive groups; P=[NH]0/[EP]0

PhGE:

phenylglycidyl ether

PETP:

poly(ethylene terephthalate)

P0 :

saturation polarization

PS:

polystyrene

PC:

polycarbonate

Q:

integral heat of cure reaction

T ∞g :

glass transition temperature of the network at the conversion α=αtop

T expg :

experimental glass transition temperature

Tcure :

cure temperature

Δ(Tg):

temperature interval of the glass transition

σy :

yield stress

Ï„y :

shear yield stress

Ï„i :

average waiting time of a breaking of chemical bond at the stress σi

U0 :

activation energy

Vsp :

specific volume

9 References

  1. Proceedings of the 1975 International Conference on Composite Materials ICCM/I, (eds.) Scala, E., Anderson, E., Tath, I., Noton, B. R., Vol. 1–2. New York, Metall. Soc. AIME 1976

    Google Scholar 

  2. Proceedings of the 1978 International Conference on Composite Materials ICCM/2, (eds.) Noton, B., Signorelly, R., Street, K., Phillips, L., Met. Soc. AIME, New York 1978

    Google Scholar 

  3. Advances in Composite Materials. Proceedings of the 1980 International Conference Composite Materials ICCM/3, (eds.) Bunsel, A., Norton, B. R., Paris 1980

    Google Scholar 

  4. Progress in Science and Engineering of Composites: (eds.) Hayashi, T., Kawata, K., Umekawa, S., Vol. 1, 2, Japan Soc. Comp. Mater. 1982

    Google Scholar 

  5. The Role of Polymeric Matrix in the Processing and Structural Properties of Composite Materials, (eds.) Seferis, J. C., Nicolais, L., Plenum Press, New York 1983

    Google Scholar 

  6. Rozenberg, B. A., Oleinik, E. F.: Usp. Khimii, 53, 2, 273, (1984)

    Google Scholar 

  7. Dušek, K. in: Rubber-Modified Thermoset Resins, (eds.) Keith Riew, C., Gillham, J. K., Advances in Chemistry Series 208, 3, Am. Chem. Soc., Washington D.C. 1984

    Google Scholar 

  8. Knunynts, M. I. et al.: Vysokomol. Soedin., A25, 1993 (1983)

    Google Scholar 

  9. Topolkaraev, V. A. et al.: Vysokomol. Soedin., A21, 1515 (1979); Mekhanika Kompozit. Mater. (SSSR), 2, 195 (1981)

    Google Scholar 

  10. Dušek, K., Ilavsky, M.: J. Polym. Sci., Polym. Phys. Ed., 21, 1323 (1983)

    Google Scholar 

  11. Artemenko, S. A. et al.: Dokl. Akad. Nauk SSSR, 245, 1139 (1979)

    Google Scholar 

  12. Solodysheva, E. S. et al.: Vysokomol. Soedin., A22, 1645 (1980)

    Google Scholar 

  13. Irzhak, V. I., Rosenberg, B. A., Yenikolopyan, N. S.: Network Polymers (in Russian), Nauka, Moscow (1979)

    Google Scholar 

  14. Rozenberg, B. A., Oleinik, E. F., Irzhak, V. I.: Zh. Mendeleev Obsh. SSSR, 23, 3, 272 (1978)

    Google Scholar 

  15. Oleinik, E. F.: Pure Appl. Chem., 53, p. 1567 (1981)

    Google Scholar 

  16. Pakhomova, L. K. et al.: Vysokomol. Soedin., 820, 7, 554 (1979)

    Google Scholar 

  17. Zarkhina, T. S. et al.: Vysokomol. Soedin., 26A, 811 (1984)

    Google Scholar 

  18. Vladimirov, L. V. et al.: Vysokomol. Soedin. 22A1, p. 225 (1980)

    Google Scholar 

  19. Salamatina, O. B. et al.: Vysokomol. Soedin., 25A, 179 (1983)

    Google Scholar 

  20. Oleinik, E. F. et al.: Khimich, Phyzika (SSSR), 3, 885 (1984)

    Google Scholar 

  21. Vladimirov, L. V.: Ph. D. thesis, Institute Chem. Phys., USSR Acad. Sci., Moscow (1980)

    Google Scholar 

  22. Knunynts, M. I. et al.: Mekh. Kompoz. Mater., 1, 156 (1984)

    Google Scholar 

  23. Zhorina, L. A. et al.: Vysokomol. Soedin., 23A, 2799 (1981)

    Google Scholar 

  24. Zarkhina, T. S. et al.: Vysokomol. Soedin., 24A, 584 (1982)

    Google Scholar 

  25. Chepel', L. M. et al.: Vysokomol. Soedin., 25A, 410 (1983); Vysokomol. Soedin., 26A, 362 (1984)

    Google Scholar 

  26. Ilavsky, M., Bogdanova, L. M., Dušek, K.: J. Polym. Sci. Polym. Phys. Ed., 22, 265 (1984)

    Google Scholar 

  27. Horie, K. et al.: J. Pol. Sci., A-1, 1357 (1970)

    Google Scholar 

  28. Babyevsky, P. G., Gillham, J. K.: J. Appl. Polym. Sci., 17, 2067 (1973)

    Google Scholar 

  29. Lunak, S., Vladyka, J., Dušek, K.: Polymer, 19, 931 (1978)

    Google Scholar 

  30. Morgan, R. J., O'Neal, J. E. in: Chemistry and Properties of Crosslinked Polymers, Labana, S. S. Editor, 289, Academic Press, New York 1977

    Google Scholar 

  31. Topolkaraev, V. A. et al.: Dokl. Akad. Nauk (SSSR) 225, 1124 (1975)

    Google Scholar 

  32. Salamatina, O. B. et al.: Vysokomol. Soedin., 23A, 2360 (1981)

    Google Scholar 

  33. Topolkaraev, V. A. et al.: Vysokomol. Soedin., 22A, 1013 (1980)

    Google Scholar 

  34. Topolkaraev, V. A. et al.: Vysokomol. Soedin., 21A, 299 (1979)

    Google Scholar 

  35. Morgan, R. J. in: The Role of the Polymeric Matrix in the Processing and Structural Properties of Composite Materials, (eds.) Seferis, J. C., Nicolais, L., p. 207, Plenum Press, New York 1983

    Google Scholar 

  36. Matyi, R. J., Uhlmann, D. R.: J. Polym. Sci., 818, 1053 (1980); Faraday Disc. Soc., 68 (1979)

    Google Scholar 

  37. Dušek, K., Plestil, J., Lednicky, F., Lunak, S.: Polymer, 19, 393, (1978)

    Google Scholar 

  38. Ferry, J. D.: Viscoelastic Properties of Polymers, New York, 1980

    Google Scholar 

  39. Kitaigorodskii, A. I.: Molecular Crystals, Nauka, Moscow 1971

    Google Scholar 

  40. Bondi, A.: Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York 1968

    Google Scholar 

  41. Kovacs, A. J.: Adv. Polym. Sci., 3, 394 (1963)

    Google Scholar 

  42. Brady, T. E., Yeh, G. S. Y.: J. Macromol. Sci. Phys., B, 139, 4, p. 659 (1974)

    Google Scholar 

  43. Ponomareva, T. I. et al.: Vysokomol. Soedin., 22A, 1958 (1980)

    Google Scholar 

  44. Moynihan, C. T. et al.: Journ. Amer. Ceram. Soc., 59, 12 (1976)

    Google Scholar 

  45. Bulatov, V. V. et al.: Polym. Bull., 13, 21 (1985)

    Google Scholar 

  46. Hirai, N., Eyring, H.: J. Polym. Sci. 37, 51 (1959)

    Google Scholar 

  47. Wunderlich, B.: J. Phys. Chem., 64, 1052 (1960)

    Google Scholar 

  48. Boyer, R. F.: J. Macrom. Sci. — Phys., B7, 487 (1973)

    Google Scholar 

  49. Vladimirov, L. V., Zelenetskii, A. N., Oleinik, E. F.: Vysokomol. Soedin., 19A, 2104 (1977)

    Google Scholar 

  50. Heijboer, J. in: Physics of Non-Crystalline Solids, (ed.) Prins, J. A., North-Holland, Amsterdam 1965

    Google Scholar 

  51. Rudnev, S. N., Oleinik, E. F.: Vysokomol. Soedin., 22A, 2482 (1980)

    Google Scholar 

  52. Chatain, D., Lacabanne, C., Maitrot, M.: Phys. Stat. Stol. (a), 13, 303 (1972)

    Google Scholar 

  53. Garroway, A. N., Ritchey, W. M., Moniz, W. B.: Proc. 28th Macromolecular Symposium IUPAC, (eds.) Chien, J. C. W., Lenz, R. W., Vogl, O., p. 1, Univ. Massachus., Amherst 1982

    Google Scholar 

  54. Ashok, L. Ch. et al.: Macromolecules, 17, 11, 2399 (1984)

    Google Scholar 

  55. Flory, P. J.: J. Macromol. Sci., Phys. B12 (1976)

    Google Scholar 

  56. Fischer, E. W. et al.: Faraday Discuss. Chem. Soc., 68 (1979)

    Google Scholar 

  57. Boyer, R. F.: Rubber Chem. Techn.: 36, 1303 (1963)

    Google Scholar 

  58. Boyer, R. F.: Encyclop. Polym. Sci., Techn., 11, 745 (1977)

    Google Scholar 

  59. Robert, G. E., White, E. F. T. in: The Physics of Glassy Polymers, Ed. Haward, R. N., 153, Appl. Sci. Publ., London, 1973

    Google Scholar 

  60. Tarasov, V. P. et al.: Vysokomol. Soedin., 24A, 2379 (1982)

    Google Scholar 

  61. Flory, P. J.: Statistical Mechanics of Chain Molecules, Interscience, New York 1969

    Google Scholar 

  62. Haward, R. N. in: The Physics of Glassy Polymers, (ed.) Haward, R. N., 3, Appl-Sci. Publ., London 1973

    Google Scholar 

  63. Vettegren, V. I., Bronnikov, S.-V., Frenkel, S. Ya.: Vysokomol. Soedin., 26A, 939 (1981)

    Google Scholar 

  64. Pakhomova, L. K. et al.: Vysokomol. Soedin., 23A, 400 (1981)

    Google Scholar 

  65. Chepel', L. M. et al.: Vysokomol. Soedin., 24A, 8, 1646 (1982)

    Google Scholar 

  66. Hedvig, P.: Dielectric Spectroscopy of Polymers, Akad. Kiado, Budapest 1977

    Google Scholar 

  67. Argon, A. S. in: Glass Science and Technology, (eds.) Uhlman, D. R., Kreidl, N. J., 79, Acad. Press, New York 1980

    Google Scholar 

  68. Escaig, B., Lefebvre, J. M.: Rev. Phys. Appliquee, 13, 285 (1978)

    Google Scholar 

  69. Bowden, P. B. in: The Physics of Glassy Polymers, (ed.) Haward, R. N., 279, Appl. Sci. Publ., London 1973

    Google Scholar 

  70. Artemenko, S. A.: Ph. D. Thesis, Inst. Chem. Phys., USSR Acad. Sci., Moscow (1985)

    Google Scholar 

  71. Cavrot, J. P. et al.: Mater. Sci. Eng., 36, 95 (1978)

    Google Scholar 

  72. Kocks, U. F., Argon, A. S., Ashby, M. F.: Thermodynamic and Kinetics of Slip, Pergamon Press, New York 1975

    Google Scholar 

  73. Argon, A. S., Bessonov, M. I.: Phil. Mag., 35, 4, 917 (1977)

    Google Scholar 

  74. Kubat, J., Righdahl, M.: Intern. J. Polym. Mater., 3, 287 (1975)

    Google Scholar 

  75. Haussy, Y. et al.: J. Polym. Sci., Phys. Edition, 18, 311 (1980)

    Google Scholar 

  76. Yamini, S., Young, R. J.: J. Mat. Sci., 15, 1814 (1980)

    Google Scholar 

  77. Oleinik, E. F. et al.: Dokl. Akad. Nauk SSSR, 286, 135 (1986)

    Google Scholar 

  78. Friedel, J.: Dislocations, Pergamon Press, London (1964)

    Google Scholar 

  79. Kargin, V. A., Slonimskii, G. L.: Encyclopedia of Polymer Science and Technology, 8, 441, New York, J. Wiley 1968

    Google Scholar 

  80. Aronhime, M. T., Gillham, J. K.: J. Coat. Techn., 56, 35 (1984)

    Google Scholar 

  81. Enns, J. B., Gillham, J. K.: J. Appl. Polym. Sci., 28, 2567 (1983)

    Google Scholar 

  82. Gillham, J. K. in: Developments in Polymer Characterization, 3, (ed.) Dawkins, J. V., Chap. 5, London, Appl. Sci. Publ. 1982

    Google Scholar 

  83. Blaine, R. L., Lofthouse, M. G.: Du Pont Instruments Technical News, Application Brief TA-65

    Google Scholar 

  84. Roe, R.-J., Curro, J. J.: Macromolecules, 16, 428 (1983)

    Google Scholar 

  85. Egami, T. in: Molecular and Atomic Glasses, (eds.) O'Reilly, J. M., Goldstein, M., Ann. N.Y. Acad. Sci., 371, 238 (1981)

    Google Scholar 

  86. Knunyants, M. I. et al.: Dokl. Akad. Nauk SSSR, 246 (1979)

    Google Scholar 

  87. Manevich, L. I. et al.: Mech. Polym. (USSR), 5, 860 (1978)

    Google Scholar 

  88. Wrasidlo, W.: J. Polym. Sci. A-2, 9, 1603 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Oleinik, E.F. (1986). Epoxy-aromatic amine networks in the glassy state structure and properties. In: Dušek, K. (eds) Epoxy Resins and Composites IV. Advances in Polymer Science, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16423-5_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-16423-5_12

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16423-4

  • Online ISBN: 978-3-540-39775-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics