Nonuniform complexity classes, decision graphs and homological properties of posets

  • L. Budach
  • B. Graw
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 208)


Decision Tree Classification Problem Geometric Realization Topological Invariant Finite Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  1. 1.
    M. Ajtai, M. Ben-Or: A theorem on probabilistic constant depth computations, Proc. 16th ACM STOC, 471–474 (1984).Google Scholar
  2. 2.
    K. Baclawski: Homology and combinatorics of ordered sets, Ph.D.Thesis, Havard University (1976).Google Scholar
  3. 3.
    A. Björner, A.M. Garsia, R.P. Stanley: An introduction to Cohen-Macaulay partially ordered sets, in I. Rival (ed.) Erdered Sets, pp. 583–615 (1982).Google Scholar
  4. 4.
    A. Björner: Shellable and Cohen-Macaulay partially ordered sets, Trans. AMS, 260 (1), 159–184 (1980).Google Scholar
  5. 5.
    A. Björner: Homotopy type of posets and lattice complementation, J. of Comb. Theory, Series A 30, 90–100 (1981).Google Scholar
  6. 6.
    R.B. Boppana: Threshold functions and bounded depth monontone circuits, Proc. 16th ACM STOC, 475–479 (1984).Google Scholar
  7. 7.
    L. Budach: Klassifizierungsprobleme und das Verhältnis von deterministischer zu nichtdeterministischer Raumkomplexität, Manuscript Aug. 1982, 72 pages.Google Scholar
  8. 8.
    L. Budach: Topological invariants of decision problems, to appear.Google Scholar
  9. 9.
    L. Budach: A lower bound for the number of nodes in a decision tree, to appear EIK.Google Scholar
  10. 10.
    H. Crapo: Selectors: A theory of formal languages, semimodular lattices, and branching and shelling processes, Adv. in Math. 54(3), 233–277 (1984).Google Scholar
  11. 11.
    M. Furst, J.B. Saxe, M. Sipser: Parity, circuits and the polynomial-time hierarchy, Proc. 22nd IEEE FOCS, 260–270 (1981).Google Scholar
  12. 12.
    B. Graw: Nonuniform space complexity and decision graphs, to appear EIK.Google Scholar
  13. 13.
    B. Korte, L. Lovasz: Mathematical structures underlying greedy algorithms, "Fundamentals of Computation Theory" (F. Gecseg Ed.), Lecture Notes in Computer Science 117, (1981).Google Scholar
  14. 14.
    W. Marek, Z. Pawlak: Information storage and retrieval systems, Math. Found. Theor. Comp. Sci, 1, 331–354 (1976).Google Scholar
  15. 15.
    P. Pudlak, S. Zak: Space complexity of computations, Manuscript (1983), 30 pages.Google Scholar
  16. 16.
    M. Sipser: Borel sets and circuit complexity, Proc. 15th ACM STOC, 61–69 (1983).Google Scholar
  17. 17.
    E.H. Spanier: Algebraic Topology, McGraw-Hill (1966).Google Scholar
  18. 18.
    A.C.-C. Yao: Separating the polynomial-time hierarchy by oracles: Part I, to appear Proc. 26th IEEE FOCS (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • L. Budach
    • 1
  • B. Graw
    • 1
  1. 1.Department of MathematicsHumboldt University BerlinBerlin

Personalised recommendations