Model theory of propositional logics of programs, some open problems

  • Z. Habasiński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 208)


Temporal Logic Decision Procedure Propositional Logic Expressive Power Dynamic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abr 80.
    Abrahamson K.R. Decidability and expressiveness of logics of processes Tech. Rep. 80-08-01, Univ. of Washington, 1980.Google Scholar
  2. Bar 74.
    Barwise J. Axioms for abstract model theory Ann. Math. Logic 7, 1974, pp. 221–265.Google Scholar
  3. Ber 80.
    Berman F. Models for verifiers Rep. of the Dept. of Comp. Sci., Purdue Univ. CSD-TR 343, 1980Google Scholar
  4. BP 78.
    Berman F., Peterson G.L. Expressiveness hierarchy for PDL with rich tests manuscript, Dept. of Comp. Sci., Univ. of Washington, 1978.Google Scholar
  5. BHP 81.
    Ben-Ari M., Halpern J.Y., Pneuli A. Deterministic Propositional Dynamic Logic: finite models, complexity, completeness rep. of MIT, TM-190, 1981 (see also ICALP '81)Google Scholar
  6. CHMP 81.
    Chandra A., Halpern J., Meyer A., Parikh R. Equations between regular terms and an application to Process Logic STOC '81, pp. 384–390.Google Scholar
  7. Chl 82.
    Chlebus B.S. On the computational complexity of satisfiability in propositional logics of programs Theoretical Comp. Sci. 21(2), 1982, pp. 179–212.Google Scholar
  8. CE 81.
    Clarke E.M., Emerson E.A. Design and synthesis of synchronization skeletons using branching time temporal logic LNCS 131, 1981, pp. 52–71.Google Scholar
  9. CES 83.
    Clarke E.M., Emerson E.A., Sistla A.P. Automatic verification of finite state concurrent systems using temporal logic specifications: a practical approach POPL 83, pp. 117–126.Google Scholar
  10. Dan 84.
    Danecki R. Propositional Dynamic Logic with strong loop predicate LNCS 176, 1984, pp. 573–581.Google Scholar
  11. Dan 85.
    — personal communication (see also this volume)Google Scholar
  12. Eme 81.
    Emerson E.A. Alternative semantics for temporal logics rep. of the Dept. of Comp. Sci., Univ. of Texas, 1981 (also in: TCS 26, 1983, pp. 121–130).Google Scholar
  13. EC 82.
    Emerson E.A., Clarke E.M. Using branching time temporal logic to synthesize synchronization skeletons Sci. of Comp. Programming 2, pp. 241–266, NHolland, 1982.Google Scholar
  14. EH 82.
    Emerson E.A., Halpern J.Y. Decision procedures and expressiveness in the Temporal Logic of Branching Time STOC 82, pp. 169 180.Google Scholar
  15. EH 83.
    — — "Sometimes" and "not never" revisited: on branching versus linear time POPL 83, pp. 127–140.Google Scholar
  16. EL 84.
    — Lei Ch. L. Temporal model checking under generalized fairness constraints rep. Dept. Comp. Sci., Univ. of Texas at Austin, 1984. (also in: 18th Hawaii Int. Conf. Systems Sci., 1985)Google Scholar
  17. EL 85.
    Emerson E. A., Lei Ch. L. Modalities for model checking: branching time strikes back POPL 85, pp. 84–96.Google Scholar
  18. ES 84.
    Emerson E.A., Street R.S. The propositional μ-calculus is elementary ICALP 84Google Scholar
  19. ES 84a.
    — Sistla A.P. Deciding Branching Time Logic STOC 84, pp. 14–24.Google Scholar
  20. ES 84b.
    — — Deciding Full Branching Time Logic Inf. and Control 61(3), 1984, pp. 175–201.Google Scholar
  21. FL 77.
    Fischer M.J., Ladner R.E. Propositional Modal Logic of Programs STOC 77, pp. 286–294.Google Scholar
  22. FL 79.
    — — Propositional Dynamic Logic of regular programs JCSS 18(2), 1979, pp. 194–211.Google Scholar
  23. Hab 84.
    Habasiński Z. Process logics: two decidability results LNCS 176, pp. 282 290.Google Scholar
  24. Hal 82.
    Halpern J.Y. Deterministic Process Logic is elementary FOCS 82, pp 204–216.Google Scholar
  25. HR 81.
    — Reif J.H. The Propositional Dynamic Logic of deterministic, well-structured programs rep. of MIT, TM-198, 1981.Google Scholar
  26. Har 79.
    Harel D. Two results on Process Logic, Inf. Proc. Lett. 8(4), 1979, pp. 195–198.Google Scholar
  27. Har 82.
    — Dynamic Logic rep. CS 83-01 of Weizman Inst. of Sci., 1982 (also in: vol. II of Handbook of Philosophical Logic, Reidel Pub. Co. 1984)Google Scholar
  28. Har 83.
    — Recurring dominoes: making the highly undecidable highly understandable LNCS 158, pp. 177–194.Google Scholar
  29. HKP 82.
    Harel D., Kozen D., Parikh R. Process Logic: expressiveness, decidability, completeness JCSS 25, 1982, pp. 144–170.Google Scholar
  30. HPS 81.
    — Pnueli A., Sherman R. Is the interesting part of Process Logic uninteresting ? A translation from PL to PDL rep. of Weizman Inst. of Sci. CS 81-26, 1981.Google Scholar
  31. HS 83.
    Harel D., Sherman R. Propositional Dynamic Logic of Flowcharts LNCS 158, pp. 195–206, 1983.Google Scholar
  32. Koz 79.
    Kozen D. On the duality of dynamic algebras and Kripke models rep. RC7893 of IBM Res. Lab. Yorktown Heights, 1979.Google Scholar
  33. Koz 79a.
    — On the representation of dynamic algebras rep. RC7898 of IBM Res. Lab., Yorktown Heights, 1979.Google Scholar
  34. Koz 80.
    — A representation theorem for models of *-free PDL LNCS 85, 1980.Google Scholar
  35. Koz 80a.
    — On the representation of dynamic algebras II rep. RC8290 of IBM Res. Lab., Yorktown Heights, 1980.Google Scholar
  36. Koz 80b.
    — On induction vs. *-continuity rep. RC8468 of IBM Res. Lab., Yorktown Heights, 1980.Google Scholar
  37. Koz 82.
    — Results on the Propositional μ-calculus LNCS 140, 1982, pp. 348–359.Google Scholar
  38. KP 81.
    — Parikh R. An elementary proof of the completeness of PDL TCS 14, 1981, pp. 113–118.Google Scholar
  39. MW 81.
    Manna Z., Wolper P. Synthesis of Communicating Processes from Temporal Logic specifications LNCS 131, 1981,pp. 253–281.Google Scholar
  40. MSM 81.
    Mayer A., Street R., Mirkowska G. The deducibility problem in Propositional Dynamic Logic LNCS 125, 1981, pp. 12–22.Google Scholar
  41. Mir 79.
    Mirkowska G. On the Propositional Algorithmic Logic LNCS 74, 1979, pp. 381–389.Google Scholar
  42. Mir 80.
    — Complete axiomatization of algorithmic properties of program schemes with bounded nondeterministic interpretations STOC 80, pp. 14–21.Google Scholar
  43. Mir 81.
    — PAL — Propositional Algorithmic Logic Fundamenta Informaticae IV.3, 1981, pp. 675–760. (also in: LNCS 125).Google Scholar
  44. Nis 80.
    Nishimura H. Descriptively complete Process Logic Acta Informatica 14, 1980, pp. 359–369.Google Scholar
  45. Niw 84.
    Niwiński D. The propositional μ-calculus is more expressive than the Propositional Dynamic Logic of Looping manuscript Math. Inst. Univ. of Warsaw 1984.Google Scholar
  46. Par 78.
    Parikh R. A completeness result for PDL LNCS 64, 1978, pp. 403–415.Google Scholar
  47. Par 80.
    — Propositional Logics of Programs POPL 80, pp. 186–192.Google Scholar
  48. Par 81.
    — Propositional Dynamic Logics of Programs: a survey LNCS 125, pp. 102–144, 1981.Google Scholar
  49. Par 83.
    — Propositional Logics of Programs: new directions LNCS 158, pp. 347–359, 1983.Google Scholar
  50. Pas 84.
    Passy S.I. Combinatory Dynamic Logic Ph.D. Thesis, Sector of Math. Logic, Sofia Univ., 1984.Google Scholar
  51. PT 85.
    Passy S.I., Tinchev T. PDL with data constans, Inf. Proc. Lett. 20, pp. 35–41, 1985.Google Scholar
  52. Pra 78.
    Pratt V.R. A practical decision method for Propositional Dynamic Logic STOC 78, pp. 326–337.Google Scholar
  53. Pra 79.
    — Process Logic: preliminary report POPL 79, pp. 93–100.Google Scholar
  54. Pra 79a.
    — Models of Program Logics FOCS 79, pp. 115–122.Google Scholar
  55. Pra 79b.
    — Dynamic algebras: examples, constructions, applications rep. TM-138 of MIT Lab. for Comp. Sci. 1979.Google Scholar
  56. Pra 80.
    — Dynamic algebras and the nature of induction STOC 80, pp. 22–28.Google Scholar
  57. Pra 81.
    — A decidable mu-calculus: preliminary report FOCS 81, pp. 421–427.Google Scholar
  58. Pra 81a.
    — Using graphs to understand PDL LNCS 131, pp. 378–396, 1981.Google Scholar
  59. Pra 80a.
    — A near optimal method for reasoning about actions JCSS 20, 1980, pp. 231–254.Google Scholar
  60. Sal 80.
    Salwicki A. On algorithmic theory of stacks Fundamenta Informaticae vol. III(3), 1980Google Scholar
  61. SM 81.
    Salwicki A., Muldner T. On the algorithmic properties of concurrent programs LNCS 125, pp. 169–197, 1981Google Scholar
  62. SVW 83.
    Sistla A.P., Vardi M.Y., Wolper P.L. Reasoning about infinite computation paths (extended abstract) FOCS 83, pp. 185–194.Google Scholar
  63. Str 81.
    Street R.S. Propositional Dynamic Logic of looping and converse STOC 81, pp. 375–383.Google Scholar
  64. Str 82.
    — Propositional Dynamic Logic of looping and converse is elementarily decidable Infor. and Control 54, 1982, pp. 121–141.Google Scholar
  65. Thi 83.
    Thiele H. Propositional Computation Tree Dynamic Logic (PCTDL) Akad. der Wissenschaften der DDR, Inst. fur Theorie, Geschichte u. Organisation der Wissenschaft, Heft 32, 1983, pp. 118–137. (in German)Google Scholar
  66. Thi 84.
    — A classification of Propositional Process Logics on the basis of automata theory (extended abstract) manuscript, 1984.Google Scholar
  67. TV 84.
    Tinchev T., Vakarelov D. Propositional Dynamic Logic with least fixed points which are programs manuscript, Sector of Math. Logic, Sofia Univ., 1984.Google Scholar
  68. Val 79.
    Valiev B. On axiomatization of Deterministic Propositional Dynamic Logic LNCS 74, pp. 482–491, 1979.Google Scholar
  69. Val 80.
    — Decision complexity of variants of Propositional Dynamic Logic LNCS 88, pp. 656–664, 1980.Google Scholar
  70. VW 84.
    Vardi M.Y., Wolper P.L. Authomata-theoretic techniques for modal logics of programs manuscript, 1984 (the first version in: STOC 84 pp. 446–456)Google Scholar
  71. Wech 83.
    Wechler W. Hoare Algebras versus Dynamic Algebras Coll. Algebra Logic and Combinatorics in Comp. Sci., Györ,1983Google Scholar
  72. Wol 82.
    Wolper P.L. Synthesis of Communicating Processes from Temporal Logic specifications rep. CS-82-925, Dept. of Comp. Sci., Stanford Univ.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Z. Habasiński
    • 1
    • 2
  1. 1.Computer CentreTechnical Univ.Poznań
  2. 2.Mathematical Inst.Polish Academy of SciencesPoland

Personalised recommendations