Hamiltonian flow on an energy surface: 240 years after the euler-maupertuis principle

  • E. W. C. van Groesen
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 239)


Periodic Solution Normal Mode Hamiltonian System Vortex Ring Periodic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.Abraham and J.E.Marsden, 1978: Foundations of Mechanics, second edition; Benjamin/Cummings.Google Scholar
  2. V.I. Arnold, 1978: Mathematical methods of classical mechanics; Springer, Berlin.Google Scholar
  3. M.S. Berger, 1971: Periodic solutions of second order dynamical systems and isoperimetric variational methods; Amer. J. Math. 93, 1–10.Google Scholar
  4. M.S. Berger (ed.), 1984: J.C. Maxwell: The Sesquicentennial Symposium; North-Holland, Amsterdam.Google Scholar
  5. H. Brezis, 1983: Periodic solutions of nonlinear vibrating strings and duality principles; Bull. A.M.S. 8, 409–426.Google Scholar
  6. C. Caratheodory, 1952: Einfuhrung in Eulers Arbeiten über Variations re chnung; in Leonhardi Euleri Opera Ommia, vol. XXIV, Bern.Google Scholar
  7. I. Ekland and J.M. Lasry, 1980: On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface; Ann. Math. 112, 283–319.Google Scholar
  8. L. Euler, 1744: Methodus Inveniendi Lineas Curvas, in, Leonhardi Euleri Opera Ommia, vol. XXIV, Bern, 1952.Google Scholar
  9. L.E. Fraenkel and M.S. Berger, 1974: A global theory of vortex rings in an ideal fluid; Acta Math. 132, 13–51.Google Scholar
  10. A. Friedman, 1982: Variational principles and free boundary problems; Wiley, New York.Google Scholar
  11. H.H. Goldstine, 1980: A history of the Calculus of Variations from the 17th through the 19th century; Springer, Berlin.Google Scholar
  12. E.W.C. van Groesen, 1983: Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian systems; Report 8306, Math.Inst., Univ. of Nijmegen; to appear in J. Diff. Eqn., 1985, vol. 56.Google Scholar
  13. 1984: On small period, large amplitude normal modes of natural Hamiltonian systems; MRC-report 2637; to be published in Nonlin. Anal. TMA.Google Scholar
  14. 1985a: On analytical mini-max methods for periodic Hamiltonian trajectories of prescribed energy; Report 8501, Math. Inst., Univ. of Nijmegen.Google Scholar
  15. 1985b: On the energy-period relation of periodic Hamiltonian motions; to be published.Google Scholar
  16. E.W.C. van Groesen and C. van der Beek, 1985: Variational characterizations of vortex rings; to be published.Google Scholar
  17. P.L.M. de Maupertuis, 1744: Accord de differentes lois de la Nature qui avoient jusqu'ici paru incompatibles; Mem. Acad. Sci., pp. 417–426; Oeuvres, Tome IV, pp. 3–28, Georg Olms, Hildesheim, 1965.Google Scholar
  18. Z. Nehari, 1960: On a class of nonlinear second order differential equations; Trans. Amer. Math. Soc. 95, 101–123.Google Scholar
  19. H. Poincarb, 1897: Sur les solutions pbriodiques et Is principe de moindre action; in Oeuvres, Tome VII, pp. 227–230, Paris,1952.Google Scholar
  20. P.H. Rabinowitz, 1978: Periodic solutions of Hamiltonian systems; Comm. Pure Appl. Math. 31, 225–251.Google Scholar
  21. H. Seifert, 1948: Periodische Bewegungen mechanischer Systeme; Math. Z. 51, 197–251.CrossRefGoogle Scholar
  22. A.Weinstein, 1978: Periodic orbits for convex Hamiltonian systems; Ann. Math. 108, 507–518.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • E. W. C. van Groesen
    • 1
  1. 1.Mathematical InstituteUniversity of NijmegenED NijmegenThe Netherlands

Personalised recommendations