On certain aspects of vorticity dynamics and turbulent energy production

  • Stavros G. Nychas
  • Elefterios G. Kastrinakis
  • Helmut Eckelman
III. Instability and Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 235)


Information obtained from multi-sensor probes which measure simultaneously the three velocity components and the instantaneous streamwise or transverse vorticity components was used to study coherent structures in low Reynolds number turbulent channel flows. The data permitted the evaluation of terms in the equation of the mean- square vorticity fluctuations. A quadrant splitting of the instantaneous Reynolds stress signals allowed a connection between vorticity and turbulent kinetic energy producing events.


Wind Tunnel Coherent Structure Horse Shoe Vortex Turbulent Channel Flow Wall Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakewell, H.P. and Lumley, J.L., Phys. Fluids 10 (1967) 1880–1889Google Scholar
  2. Blackwelder, R.F. and Eckelmann, H., J. Fluid Mech. 94 (1979) 577–594Google Scholar
  3. Doligalski, T.L. and Walker, J.D.A., J. Fluid Mech. 139 (1984) 1–28Google Scholar
  4. Eckelmann, H., Nychas, S.G., Brodkey, R.S. and Wallace, J.M., Phys. Fluids 20 (1977) S225–5231Google Scholar
  5. Eckelmann, H., Kastrinakis, E.G. and Nychas, S.G., in: Tatsumi, T. (ed.), IUTAM Symp. on Turbulence and Chaotic Phenomena in Fluids, Kyoto 1983. Elsevier Science Publishers B.V. (North-Holland) 1984Google Scholar
  6. Falco, R.E., AIAA Paper 80-1356 (1980)Google Scholar
  7. Head, M.R. and Bandyopadhyay, P., J. Fluid Mech. 107 (1981) 297–338Google Scholar
  8. Kastrinakis, E.G., Max-Planck-Institut für Strömungsforschung, Bericht 5 (1977)Google Scholar
  9. Kastrinakis, E.G. Nychas, S.G. and Eckelmann, H., in: Dumas, R. and Fulachier, L. (eds.), IUTAM Symp. on Structure of Complex Turbulent Shear Flow, Marseille 1982. Springer, Berlin, Heidelberg, New York, 1983Google Scholar
  10. Kastrinakis, E.G., Eckelmann, H., J. Fluid Mech. 137 (1983) 165–186Google Scholar
  11. Kim, H.T., Kline, S.J. and Reynolds, W.C., J. Fluid Mech. 50 (1971) 133–160Google Scholar
  12. Nicolaides, C., Lau, K.K. and Hanratty, T.J., J. Fluid Mech. 130 (1983) 91–108Google Scholar
  13. Nychas, S.G., Hershey, H.C. and Brodkey, R.S., J. Fluid Mech. 61 (1973) 513–540Google Scholar
  14. Nychas, S.G., Eckelmann, H., Wallace J.M. and Brodkey, R.S., Max-Planck Institut für Strömungsforschung, Bericht 107 (1975)Google Scholar
  15. Praturi, A.K. and Brodkey, R.S., J. Fluid Mech. 89 (1978) 251–272Google Scholar
  16. Smith, C.R. and Schwartz, S.P., Phys. Fluids 26 (1983) 641–652Google Scholar
  17. Tennekes, H. and Lumley, J.L.: A First Course in Turbulence, The MIT Press, Cambridge, Mass. (1972)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Stavros G. Nychas
    • 1
  • Elefterios G. Kastrinakis
    • 1
  • Helmut Eckelman
    • 2
  1. 1.Department of Chemical EngineeringUniversity of ThessalonikiGreece
  2. 2.Max-Planck-Institut für StrömungsforschungGöttingen

Personalised recommendations