Deterministic chaos in rotational Taylor-Couette flow

  • Gerd Pfister
III. Instability and Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 235)


In going from laminar to turbulent flow, the rotational Taylor-Couette flow passes through a sequence of space and time periodic flow patterns. We have shown experimentally for the first time, that for small aspect ratios of the annulus, the Taylor-Couette flow undergoes a period doubling cascade on its route to turbulence when the Reynolds number is increased. Laser-Doppler-velocimetry has been used to measure local velocities, velocity correlation functions and velocity power spectra as well. Using these data, return maps have been constructed to analyze the dynamical behaviour of the flow in the sense of iterated maps. With these procedures we can show that the flow shows deterministic chaotic behaviour having a strange attractor.


Reynolds Number Accumulation Point Strange Attractor Deterministic Chaos Small Aspect Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BENJAMIN, T. B. & MULLIN, T, 1981 Proc. Roy. Soc. A377, p. 221Google Scholar
  2. BRANDSTÄTER, A., SWIFT, J., SWINNEY, H. L., WOLF, A., FARMER, J. D., JEN, E. & CRUTCHFIELD, P. J., 1983 Phys. Rev. Lett. 51, p. 1442Google Scholar
  3. ECKMANN, J. P., 1981, Rev. Mod. Phys. 53, p. 643Google Scholar
  4. FEIGENBAUM, M., 1978 J. Stat. Phys. 19, p. 25; 21, p. 669Google Scholar
  5. FENSTERMACHER, P. R., SWINNEY, H. L. & GOLLUP, J. P., 1979 J. Fluid Mech. 94, p. 103Google Scholar
  6. HENON, M., 1976 Comm. Math. Phys. 50, p. 69Google Scholar
  7. HILLE, P., this conferenceGoogle Scholar
  8. HORNER, H., 1983 Phys. Rev. 27, P. 1270Google Scholar
  9. LINDSAY, P. S., 1981 Phys. Rev. Lett. 47, p 1349Google Scholar
  10. LÜCKE, M., MIHELCIC, M., WINGERATH, K. & PFISTER, G., 1984 J. Fluid Mech. 140, p. 343Google Scholar
  11. MANNEVILLE, P. & POMEAU, Y., 1980 Physica 1D, p. 217Google Scholar
  12. MAURER, J. & LIBCHABER, A., 1979 J. Phys. (Paris) 40, p. 419Google Scholar
  13. MAY, R. M., 1976 Nature 261, p. 459Google Scholar
  14. MULLIN, T., PFISTER, G. & LORENZEN, A., 1982 Phys. of Fluids 25, p. 1134Google Scholar
  15. PFISTER, G., 1980 in Proc. from the 4th Int. Conf. on Photon Correlation Techniques in Fluid Mechanics, p. 27/1Google Scholar
  16. PFISTER, G. & REHBERG, I., 1981 Phys. Lett. 83A, p. 19Google Scholar
  17. PFISTER, G. & GERDTS, U., 1981 Phys. Lett. 83A, p. 23Google Scholar
  18. PFISTER G., GERDTS, U. LORENZEN, A. & sCHÄTZEL, K., 1982 in PHOTON CORRELATION TECHNIQUES (ed.) E. O. Schulz-DuBois) p. 256Google Scholar
  19. PFISTER, G., SCHÄTZEL, K. & GERDTS, U., 1984 in Laser Anemometry in Fluid Mechanics (ed. D. F. G. Durao), p. 37Google Scholar
  20. RUELLE, D. & TAKENS, F., 1971 Comm. Math. Phys. 20, p. 167Google Scholar
  21. SCHMIDT, H., 1983 Diplomarbeit Kiel and PFISTER, G. & SCHMIDT, H., to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Gerd Pfister
    • 1
  1. 1.Institute for Applied Physics University of KielW. Germany

Personalised recommendations