Investigation of large-scale vortex rings in he ii by acoustic measurements of circulation

  • H. Borner
  • D. W. Schmidt
II. Real Gas Effects
Part of the Lecture Notes in Physics book series (LNP, volume 235)


By forcing He II out of a tube, large-scale vortex rings with diameters of about 1 cm and normal-fluid and superfluid circulations of some cm 2/s were produced. The circulations, the vorticity distributions, the dimensions, and also the translational velocity of these vortex rings were investigated by means of a method of measurement based on the Doppler effect of first and second sound. All parameters of the vortex rings turned out to be independent of temperature. Already during the ejection of the fluid both the normal and the superfluid circulation were identical. This result is explained in terms of the formation of a superfluid boundary layer at the inner wall of the tube and the interaction of normal and superfluid flow due to the mutual friction force.


Vortex Ring Vortex Core Vortex Line Translational Velocity Vorticity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.W. Schwarz, Phys. Rev. B 18, 245 (1978).Google Scholar
  2. [2]
    J.T. Tough, Progress in Low Temperature Physics, edited by D.F. Brewer (North-Holland, Amsterdam, 1982), Vol. 8, Chap. 3, p. 133.Google Scholar
  3. [3]
    R.A. Ashton, L.B. Opatowski, and J.T. Tough, Phys. Rev. Lett. 46, 658 (1981).Google Scholar
  4. [4]
    J.T. Tough and M.L. Baehr, Proc. XVII-th Int. Conf. Low Temp. Phys., Karlsruhe, 1984 (North-Holland, Amsterdam, 1984), p. 317.Google Scholar
  5. [5]
    R.P. Slegtenhorst, G. Marees, and H. van Beelen, Physics. 113B, 341 (1982).Google Scholar
  6. [6]
    P.E. Dimotakis and G.A. Laguna, Phys. Rev. B 15, 5240 (1977).Google Scholar
  7. [7]
    H.W. Liepmann and G.A. Laguna, Ann. Rev. Fluid Mech. 16, 139 (1984).Google Scholar
  8. [8]
    W. Fiszdon, Z. Peradzynski, and W. Poppe, to be published in Phys. Fluids.Google Scholar
  9. [9]
    H. Borner, T. Schmeling, and D.W. Schmidt, Phys. Fluids 26, 1410 (1983).Google Scholar
  10. [10]
    I.M. Khalatnikov, Zh. Eksperim. Teor. Fiz. 30, 617 (1956), Sov. Phys. JETP 3, 649 (1956).Google Scholar
  11. [11]
    H. Borner and D.W. Schmidt, Mitt. MPI Strömungsforsch., Göttingen, Nr. 79 (1985).Google Scholar
  12. [12]
    N. Didden, Mitt. MPI Strömungsforsch. AVA, Göttingen, Nr. 64 (1977).Google Scholar
  13. [13]
    N. Didden, J. Appl. Math. Phys. (ZAMP) 30, 101 (1979).Google Scholar
  14. [14]
    I.M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965), Chap. 16, p. 93.Google Scholar
  15. [15]
    L.J. Campbell and Yu.K. Krasnov, J. Low Temp. Phys. 49, 377 (1982).Google Scholar
  16. [16]
    J.A. Geurst, Phys. Lett. 71A, 78 (1979).Google Scholar
  17. [17]
    W. Fiszdon, W. Poppe, and D.W. Schmidt, MPI Strömungsforsch., Göttingen, Ber.Nr. 1/1985 (1985).Google Scholar
  18. [18]
    M. v. Schwerdtner, MPI Strömungsforsch., Göttingen, Ber.Nr. 15/1984 (1984).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Borner
    • 1
  • D. W. Schmidt
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungBöttingerstr. 4-8

Personalised recommendations