Skip to main content

Progress on the equivalence problem

  • Applications I
  • Conference paper
  • First Online:
EUROCAL '85 (EUROCAL 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 204))

Included in the following conference series:

Abstract

The equivalence problem in general relativity arises from the arbitrariness of coordinate choice and is the problem of deciding whether two apparently, different space-times are (locally) identical or not. Here we review the basic procedure for resolving this question, and its practical implementation, as presented in previous papers, and report on recent theoretical and practical research in this area. Some of the techniques are of interest in other problems; in particular, they may be applicable to tests of the equivalence of systems of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Åman and A. Karlhede, Phys. Lett. 80A (1980) 229.

    Google Scholar 

  2. A. Karlhede and J.E. Åman, Abstracts of contributed papers, 9th International Conference on General Relativity and Gravitation (1980) 104.

    Google Scholar 

  3. J.E. Åman and A. Karlhede, Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computation (Symsac '81) (1981) 79.

    Google Scholar 

  4. M.A.H. MacCallum, in ‘Unified Field Theories of more than 4 dimensions, including exact solutions’ ed. V. de Sabbata and E. Schmutzer, World Scientific, Singapore (1983).

    Google Scholar 

  5. I. Cohen, I. Frick, and J.E. Åman, in "General Relativity and Gravitation" ed. B. Bertotti, F. de Felice and A. Pascolini (Proceedings of the 10th international conference) D. Reidel, Dordrecht (1984).

    Google Scholar 

  6. M.A.H. MacCallum, in ‘Classical General Relativity’ ed. W.B. Bonnor, J.N. Islam and M.A.H. MacCallum. Cambridge University Press (1984).

    Google Scholar 

  7. J.E. Åman ‘Manual for CLASSI — Classification Programs for Geometries in General Relativity', preprint, Inst. of Theoretical Physics, University of Stockholm (1982).

    Google Scholar 

  8. T.Y. Thomas, ‘Differential invariants of generalised spaces', Cambridge University Press (1934).

    Google Scholar 

  9. E. Cartan, ‘Lecons sur la geometrie des espaces de Riemann’ Gauthier-Villars, Paris (1946).

    Google Scholar 

  10. J. Ehlers, in ‘E.B. Christoffel’ ed. P.L. Butzer and E. Feher, Birkhauser Verlag, Berlin (1981).

    Google Scholar 

  11. A. Karlhede, Gen. Rel. and Grav. 12, 693 (1980).

    Google Scholar 

  12. C.H. Brans, J. Math. Phys. 6, 94 (1965).

    Google Scholar 

  13. I. Frick 'sHEEP Users guide', Institute of Physics, University of Stockholm report 77-14 (1977).

    Google Scholar 

  14. I. Frick, ‘The Computer Algebra System SHEEP, what it can and cannot do in General Relativity'. Inst. of Theoretical Physics, University of Stockholm report 77-15 (1977).

    Google Scholar 

  15. R.A. d'Inverno and I. Frick, Gen. Rel. and Grav. 14 (1982) 835.

    Google Scholar 

  16. R. Penrose and W. Rindler, 'spinors and space-time vol.1: Two-spinor calculus and relativistic fields’ Cambridge University Press (1984).

    Google Scholar 

  17. A. Karlhede and M.A.H. MacCallum, Gen. Rel. and Grav. 14, 673 (1982).

    Google Scholar 

  18. A. Karlhede and J.E. Åman, ‘A Classification of the Vacuum D Metrics'. Preprint, University of Stockholm (1981).

    Google Scholar 

  19. J.E. Åman, in ‘Classical General Relativity', ed. W.B. Bonnor, J.N.Islam and M.A.H. MacCallum, Cambridge University Press, 1 (1984).

    Google Scholar 

  20. J.E. Åman, R.A. d'Inverno, G.C. Joly and M.A.H. Joly MacCallum in ‘Eurosam’ 84, ed. J. Fitch, Springer Lecture notes in Computer Science 174, (1984) 47.

    Google Scholar 

  21. R. Penrose, Ann. Phys. 10 (1960) 171.

    Google Scholar 

  22. J.E. Åman and M.A.H. MacCallum, ‘On the minimal set of derivatives required for the equivalence problem', paper in preparation.

    Google Scholar 

  23. W. Kundt, in ‘Recent Developments in General Relativity’ PWN, Warsaw (1962).

    Google Scholar 

  24. M. Bradley, ‘Finding Perfect Fluid Solutions to Einstein's Equations without using a metric', paper in preparation, Institute of Theoretical Physics, University of Stockholm (1985).

    Google Scholar 

  25. D. Kramer, H. Stephani, M.A.H. MacCallum and E. Herlt, ‘Exact Solutions of Einstein's Field Equations', VEB Deutscher Verlag der Wissenschaften, Berlin, and Cambridge University Press (1980). [Russian edn. Energoisdat, Moscow, 1982.]

    Google Scholar 

  26. M.A.H. MacCallum, 10th International Conference on General Relativity and Gravitation, Abstracts of contributed papers, 301 (1983).

    Google Scholar 

  27. A. Karlhede, U. Lindstrom and J.E. Åman, Gen. Rel. Grav. 14 (1982) 569.

    Google Scholar 

  28. A. Karlhede and U. Lindstrom, Gen. Rel. Grav. 15, (1982) 597.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bob F. Caviness

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Åman, J.E., d'Inverno, R.A., Joly, G.C., MacCallum, M.A.H. (1985). Progress on the equivalence problem. In: Caviness, B.F. (eds) EUROCAL '85. EUROCAL 1985. Lecture Notes in Computer Science, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-15984-3_242

Download citation

  • DOI: https://doi.org/10.1007/3-540-15984-3_242

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15984-1

  • Online ISBN: 978-3-540-39685-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics