Skip to main content

Modelling of three-dimensional shock wave turbulent boundary layer interactions

  • Conference paper
  • First Online:
Macroscopic Modelling of Turbulent Flows

Part of the book series: Lecture Notes in Physics ((LNP,volume 230))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackeret, J., Feldman, F., and Rott, N. 1947 Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speeds. NASA TM 1113.

    Google Scholar 

  • Adamson, T., and Messiter, A. 1980 Analysis of Two-Dimensional Interactions Between Shock Waves and Boundary Layers. Annual Review of Fluid Mechanics, Vol. 12, pp. 103–108.

    Google Scholar 

  • Baldwin, B., and Lomax, H. 1978Thin Layer Approximation and Algebraic Model for Separated Flows. AIAA Paper No. 78-257.

    Google Scholar 

  • Baldwin, B., and MacCormack, R. 1975 A Numerical Method for Solving the Navier-Stokes Equations with Application to Shock-Boundary Layer Interactions. AIAA Paper No. 75-1.

    Google Scholar 

  • Brosh, A., Kussoy, M., and Hung, C. 1983 An Experimental and Numerical Investigation of the Impingement of an Oblique Shock Wave on a Body of Revolution. AIAA Paper No. 83-1757.

    Google Scholar 

  • Buleev, N. 1963 Theoretical Model of the Mechanism of Turbulent Exchange in Fluid Flows. AERE Translation 957, Atomic Energy Research Estab., Hartwell, England.

    Google Scholar 

  • Christiansen, W., Russell, D., and Hertzberg, A. 1975 Flow Lasers. Annual Review of Fluid Mechanics, Vol. 7, pp. 115–140.

    Google Scholar 

  • Debieve, J.-F., Gouin, H., and Gaviglio, J. 1982 Evolution of the Reynolds Stress Tensor in a Shock Wave-Turbulence Interaction. Indian J. Tech., Vol, 20, pp. 90–97.

    Google Scholar 

  • Deiwert, G. 1975 Numerical Simulation of High Reynolds Number Transonic Flows. AIAA J., Vol. 13, pp. 1354–1359.

    Google Scholar 

  • Dolling, D., and Bogdonoff, S. 1983 Upstream Influence in Sharp Fin-Induced Shock Wave Turbulent Boundary-Layer Interaction. AIAA J., Vol. 21, pp. 143–145.

    Google Scholar 

  • Escudier, M. 1965 The Distribution of the Mixing Length in Turbulent Flows Near Walls. Report TWF/TN/l, Imperial Coll., Mech. Engr. Dept., London.

    Google Scholar 

  • Freeman, L., and Korkegi, R. 1975 Experiments on the Interaction with a Turbulent Boundary Layer of a Skewed Shock. ARL TR 75-0182.

    Google Scholar 

  • Gessner, F., and Po, J. 1976 A Reynolds Stress Model for Turbulent Corner Flows — Part II: Comparison Between Theory and Experiment. J. Fluids Engr., Trans. of ASME, Vol. 98, Series 1, pp. 269–277.

    Google Scholar 

  • Goodwin, S. 1984 An Exploratory Investigation of Sharp-Fin Induced Shock Wave/Turbulent Boundary Layer Interactions at High Shock Strengths. MS Thesis, Dept. Aero. and Mech. Engr., Princeton U.

    Google Scholar 

  • Green, J. 1970 Interactions Between Shock Waves and Turbulent Boundary Layers Prog. Aero. Sciences, Vol. 11, pp. 235–240.

    Google Scholar 

  • Hankey, W., and Holden, M. 1975 Two-Dimensional Shock Wave-Boundary Layer Interactions in High Speed Flows. AGARDograph No. 203.

    Google Scholar 

  • Holden, M. 1984 Experimental Studies of Quasi-Two-Dimensional and Three-Dimensional Viscous Interaction Regions Induced by Skewed-Shock and Swept-Shock Boundary Layer Interaction. AIAA Paper No. 84-1677.

    Google Scholar 

  • Horstman, C., and Hung, C. 1979Computation of Three-Dimensional Separated Flows at Supersonic Speeds. AIAA Paper No. 79-0002.

    Google Scholar 

  • Horstman, C. 1984a A Computational Study of Complex Three-Dimensional Compressible Turbulent Flow Fields. AIAA Paper No. 84-1556.

    Google Scholar 

  • Horstman, C. 1984b Private Communications. June 1984, July 1984, November 1984.

    Google Scholar 

  • Horstman, C., Kussoy, M., and Lockman, W. 1985 Computation of Three-Dimensional Shock-Wave/Turbulent Boundary-Layer Interaction Flows. Third Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, California.

    Google Scholar 

  • Hung, C., and MacCormack, R. 1978 Numerical Solution of Three-Dimensional Shock Wave and Turbulent Boundary Layer Interaction. AIAA J., Vol. 16, pp. 1090–1096.

    Google Scholar 

  • Inger, G. 1984 Analytical Investigation of Swept Shock-Turbulent Boundary Layer Interaction in Supersonic Flow. AIAA Paper No. 84-1555.

    Google Scholar 

  • Jones, W., and Launder, B. 1972 The Prediction of Laminarization with a Two-Equation Model of Turbulence. Int. J. Heat and Mass Transfer, Vol. 15, pp. 301–304.

    Google Scholar 

  • Keller, H. 1974 Accurate Difference Methods for Nonlinear Two-Point Boundary Value Problems. SIAM J. Numerical Analysis, Vol. 11, pp. 305–320.

    Google Scholar 

  • Knight, D. 1981a Improved Calculation of High Speed Inlet Flows Part I. Numerical Algorithm. AIAA J., Vol. 19, pp. 34–41.

    Google Scholar 

  • Knight, D. 1981b Improved Calculation of High Speed Inlet Flows Part II. Results. AIAA J., Vol. 19, pp. 172–179.

    Google Scholar 

  • Knight, D. 1981c Calculation of High-Speed Inlet Flows Using the Navier-Stokes Equations. J. Aircraft, Vol. 18, pp. 748–754.

    Google Scholar 

  • Knight, D. 1983 Calculation of a Simulated 3-D High Speed Inlet Using the Navier-Stokes Equations. AIAA Paper No. 83-1165.

    Google Scholar 

  • Knight, D. 1984a Numerical Simulation of 3D Shock Turbulent Boundary Layer Interaction Generated by a Sharp Fin. AIAA Paper No. 84-1559.

    Google Scholar 

  • Knight, D. 1984b A Hybrid Explicit-Implicit Numerical Algorithm for the Three-Dimensional Compressible Navier-Stokes Equations. AIAA J., Vol. 22, pp. 1056–1063.

    Google Scholar 

  • Korkegi, R. 1971 Survey of Viscous Interactions Associated with High Mach Number Flight. AIAA J., Vol. 9, pp. 771–784.

    Google Scholar 

  • Korkegi, R. 1976 On the Structure of Three-Dimensional Shock-Induced Separated Flow Regions. AIAA J., Vol. 14, pp. 597–600.

    Google Scholar 

  • Kubota, H., and Stollery, J. 1982 An Experimental Study of the Interaction Between a Glancing Shock Wave and a Turbulent Boundary Layer. J. Fluid Mech., Vol. 116, pp. 431–458.

    Google Scholar 

  • Liepmann, H. 1946 The Interaction Between Boundary Layer and Shock Waves in Transonic Flow. J. Aero. Sciences, Vol. 13, pp. 623–637.

    Google Scholar 

  • MacCormack, R. 1971 Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer. Lecture Notes in Physics, Vol. 8, pp. 151–163.

    Google Scholar 

  • MacCormack, R. 1982 A Numerical Method for Solving the Equations of Compressible Viscous Flow. AIAA J., Vol. 20, pp. 1275–1281.

    Google Scholar 

  • McCabe, A. 1966 The Three-Dimensional Interaction of a Shock Wave with a Turbulent Boundary Layer, The Aeronautical Quarterly, Vol. 17, pp. 231–252.

    Google Scholar 

  • McClure, W., and Dolling, D. 1983 Flowfield Scaling in Sharp Fin-Induced Shock Wave Turbulent Boundary Layer Interaction, AIAA Paper No. 83-1754.

    Google Scholar 

  • Muck, K., and Smits, A. 1984 Behavior of a Turbulent Boundary Layer Subjected to a Shock-Induced Separation. AIAA Paper No. 84-0097.

    Google Scholar 

  • Oskam, B., Vas, I., and Bogdonoff, S. 1976 Mach 3 Oblique Shock Wave/Turbulent Boundary Layer Interactions in Three Dimensions. AIAA Paper No. 76-336.

    Google Scholar 

  • Oskam, B., Vas, I., and Bogdonoff, S. 1977 An Experimental Study of Three-Dimensional Flow Fields in an Axial Corner at Mach 3. AIAA Paper No. 77-689.

    Google Scholar 

  • Peake, D. 1976 Three Dimensional Swept Shock/Turbulent Boundary Layer Separations with Control by Air Injection. Aero. Report No. LR-592, National Research Council — Canada.

    Google Scholar 

  • Pulliam, T. and Steger, J. 1980 Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow. AIAA J., Vol. 18, pp. 159–167.

    Google Scholar 

  • Roshko, A., and Thomke, G. 1976 Flare Induced Interaction Lengths in Supersonic Turbulent Boundary Layers, AIAA J., Vol. 15, pp. 873–879.

    Google Scholar 

  • Rubesin, M., and Rose, W. 1973 The Turbulent Mean-Flow, Reynolds-Stress and Heat-Flux Equations in Mass Averaged Dependent Variables. NASA TMX-62248.

    Google Scholar 

  • Settles, G., Horstman, C., and McKenzie, T. 1984 Flowfield Scaling of a Swept Compression Corner Interaction — A Comparison of Experiment and Computation. AIAA Paper No. 84-0096.

    Google Scholar 

  • Settles, G., and Teng, H. 1984 Cylindrical and Conical Flow Regimes of Three-Dimensional Shock/Boundary Layer Interactions. AIAA J., Vol. 22, pp. 194–200.

    Google Scholar 

  • Shang, J., Hankey, W., and Petty, J. 1979 Three-Dimensional Supersonic Interacting Turbulent Flow Along a Corner. AIAA J., Vol. 17, pp. 706–713.

    Google Scholar 

  • Shang, J. 1984 An Assessment of Numerical Solutions of the Compressible Navier-Stokes Equations. AIAA Paper No. 84-1549.

    Google Scholar 

  • Stalker, R. 1984 A Characteristics Approach to Swept Shock-Wave Boundary Layer Interactions. AIAA J., Vol. 22, pp. 1626–1632.

    Google Scholar 

  • Thompson, J., and Warsi, Z. 1982 Boundary-Fitted Coordinate Systems for Numerical Solution of Partial Differential Equations — A Review. J. Comp. Physics, Vol. 47, 1982, pp. 1–108.

    Google Scholar 

  • Token, K. 1974 Heat Transfer Due to Shock Wave/Turbulent Boundary Layer Interactions on High Speed Weapons Systems. Air Force Flight Dynamics Lab Report AFFDL-TR-74-77.

    Google Scholar 

  • Viegas, J., and Rubesin, M. 1983 Wall-Function Boundary Conditions in the Solution of the Navier-Stokes Equations for Complex Compressible Flows. AIAA Paper No. 83-1694.

    Google Scholar 

  • West, J., and Korkegi, R. 1972 Supersonic Interaction in the Corner of Intersecting Wedges at High Reynolds Number. AIAA J., Vol. 10, pp. 652–656.

    Google Scholar 

  • York, B., and Knight, D. 1985 Calculation of a Class of Two-Dimensional Turbulent Boundary Layer Flows Using the Baldwin-Lomax Model. AIAA Paper No. 85-0226.

    Google Scholar 

  • Zheltovodov, A. 1982 Regimes and Properties of 3-D Separation Flows Initiated by Skewed Compression Shocks. Zhur. Prk. Mekh. i. Tekh. Fiz., No. 3, pp. 116–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Uriel Frisch Joseph B. Keller George C. Papanicolaou Olivier Pironneau

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Knight, D.D. (1985). Modelling of three-dimensional shock wave turbulent boundary layer interactions. In: Frisch, U., Keller, J.B., Papanicolaou, G.C., Pironneau, O. (eds) Macroscopic Modelling of Turbulent Flows. Lecture Notes in Physics, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-15644-5_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-15644-5_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15644-4

  • Online ISBN: 978-3-540-39520-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics