Skip to main content

(TMTSF)2X compounds: Superconductivity, spin-density waves and anion ordering

  • VI. Related Topics
  • Conference paper
  • First Online:
Charge Density Waves in Solids

Part of the book series: Lecture Notes in Physics ((LNP,volume 217))

  • 193 Accesses

Abstract

The different types of experimentally observed phase transitions in (TMTSF)2X and (TMTTF)2X salts (superconductivity, antiferromagnetism, spin-Peierls and anion ordering) are reviewed. Current theoretical models of these transitions and the related low-temperature properties are discussed. Both theoretical arguments and experimental results, mainly from transport and magnetic resonance measurements, suggest important effects of low dimensionality in these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Peierls, Ann. Phys. (Leipzig) 4, 121 (1930), “Quantum Theory of Solids” (Oxford University Press, London, 1955), p.108.

    Google Scholar 

  2. D. Jérome et al., J. Phys. (Paris) Lett. 41, L95 (1980).

    Google Scholar 

  3. J.C. Slater, Phys. Rev. 82, 538 (1951); J. des Cloiseaux, J. Phys. Radium (Paris) 20, 607 (1959); A.W. Overhauser, Phys. Rev. Lett. 4, 462 (1960).

    Google Scholar 

  4. E. Pytte, Phys. Rev. B 10, 4637 (1974); M.C. Cross and D.S. Fisher, Phys. Rev. B 19, 402 (1979).

    Google Scholar 

  5. “Conducteurs et Supraconducteurs Synthétiques à basse Dimension”, Les Arcs, France, 1982, J. Phys. (Paris) Colloque 44 (1983).

    Google Scholar 

  6. Proceedings of the “International Conference on Low-Dimensional Synthetic Metals”, Abano Terma, Italy, 1984, Mol. Cryst. Liq. Cryst., to appear.

    Google Scholar 

  7. J. Friedel and D. Jérome, Contemp. Phys. 23, 583 (1982).

    Google Scholar 

  8. D. Jérome and H.J. Schulz, Adv. Phys. 32, 299 (1982).

    Google Scholar 

  9. S.S.P. Parkin et al., Phys. Rev. Lett. 50, 270 (1883).

    Google Scholar 

  10. E.B. Yagubskii et al., Pisma JETP 39, 275 (1984) (JETP Lett. 39, to appear).

    Google Scholar 

  11. C.S. Jacobsen et al., Solid State Commun. 38, 423 (1981), Phys. Rev. Lett. 46, 1142 (1981), and in ref. 5; J.F. Kwak, Phys. Rev. B 26, 4789 (1982).

    Google Scholar 

  12. P.M. Grant, Phys. Rev. B 26, 6888 (1982), and in ref. 5.

    Google Scholar 

  13. K. Bechgaard et al., Phys. Rev. Lett. 46, 852 (1981).

    Google Scholar 

  14. K. Andres et al., Phys. Rev. Lett. 45, 1449 (1980).

    Google Scholar 

  15. P. Garoche et al., J. Phys. (Paris) Lett. 43, L147 (1982).

    Google Scholar 

  16. J.C. Scott et al., Phys. Rev. Lett. 45, 2125 (1980); A. Andrieux et al., J. Phys. (Paris) Lett. 42, L87 (1981); K. Mortensen et al., Phys. Rev. Lett. 46, 1234 (1981), Phys. Rev. B 25, 3319 (1982).

    Google Scholar 

  17. J.B. Torrance et al., Phys. Rev. Lett. 49, 882 (1982); W.M. Walsh et al., Phys. Rev. Lett. 49, 885 (1982).

    Google Scholar 

  18. L.J. Azevedo et al., Physica B 108, 1183 (1981); J.F. Kwak et al., Phys. Rev. Lett. 46, 1296 (1981).

    Google Scholar 

  19. T. Takahashi et al., J. Phys. (Paris) Lett. 43, L565 (1982), and in ref. 5.

    Google Scholar 

  20. M. Ribault et al., J. Phys. (Paris) Lett. 44, L953 (1983), ibid. 45, to appear, and in ref. 6.

    Google Scholar 

  21. L.P. Gorkov and A.G. Lebed, J. Phys. (Paris) Lett. 45, L433 (1984).

    Google Scholar 

  22. M. Heritier et al., J. Phys. (Paris) Lett. 45, to appear. See also; J. Friedel, to be published; K. Yamaji, in ref. 6.

    Google Scholar 

  23. J.P. Pouget et al., J. Phys..(Paris) Lett. 42, L543 (1982), and in ref. 5.

    Google Scholar 

  24. S. Tomic et al., in ref. 5; T. Takahashi et al., ref. 19.

    Google Scholar 

  25. S.S.P. parkin et al., Mol. Cryst. Liq. Cryst. 79, 213 (1982).

    Google Scholar 

  26. R. Bruinsma and V.J. Emery, in ref. 5; P.M. Grant, Phys. Rev. Lett., (1983).

    Google Scholar 

  27. Yu. A. Bychkov et al., Sov. Phys. JETP 23, 489 (1966).

    Google Scholar 

  28. J. Solyom, Adv. Phys. 28, 201 (1979); V.J. Emery, in ldHighly Conducting One-Dimensional Solids”, ed. by J.T. Devreese et al. (Plenum, New York, 1979),p. 247.

    Google Scholar 

  29. D.J. Scalapino et al., Phys. Rev. B 11, 2042 (1975); R.A: Klemm and H. Gutfreund, Phys. Rev. B 14, 1086 (1976).

    Google Scholar 

  30. H.J. Schulz, to be published.

    Google Scholar 

  31. H.J. Schulz and C. Bourbonnais, Phys. Rev. B 27, 5856 (1983); H.J. Schulz, in ref.5.

    Google Scholar 

  32. S. Barisic and S. Brazovskii, in “Recent Developments in Condensed Matter Physics”, vol. 1, ed. by J.T. Devreese (Plenum, New York, 1981), P. 327; V.J. Emery et al., Phys. Rev. Lett. 48, 1039 (1982).

    Google Scholar 

  33. J.F. Hirsch and D.J. Scalapino, Phys. Rev. Lett. 50, 1168 (1983).

    Google Scholar 

  34. C. Coulon et al., J. Phys. (Paris) 43, 1721 (1982); S. Tomic et al., in ref. 5.

    Google Scholar 

  35. H.J. Schulz, J. Phys. C 16, 6769 (1983).

    Google Scholar 

  36. J. Voit and H.J. Schulz, in ref. 6.

    Google Scholar 

  37. L.G. Caron and C. Bourbonnais, Phys. Rev. B 29, 4230 (1984).

    Google Scholar 

  38. B. Horovitz et al., Solid State Commun. 39, 541 (1981).

    Google Scholar 

  39. K. Machida, J. Phys. Soc. Jpn. 50, 2195 (1981); K. Machida and T. Matsubara, ibid. 50, 3231 (1981).

    Google Scholar 

  40. K. Yamaji, J. Phys. Soc. Jpn. 52, 1361 (1983), and in ref. 6.

    Google Scholar 

  41. H.J. Schulz et al., Phys. Rev. B 28, 6560 (1983).

    Google Scholar 

  42. C. Bourbonnais et al., J. Phys. (Paris) Lett. 45, L755 (1984). The crossover exponent determined in this paper differs from eq.(6), probably because different physical quantities are considered.

    Google Scholar 

  43. P.M. Chaikin et al., in ref. 5.

    Google Scholar 

  44. H.K. Ng et al., J. Phys. (Paris) Lett. 43, L513 (1982), and in ref. 5; T. Timusk and H.K. Ng, in ref. 6.

    Google Scholar 

  45. H.J. Schulz et al., J. Phys. (Paris) 42, 991 (1981). The Ginzburg-Landau transport theory used in this paper is certainly at best of some qualitative validity, see also ref. 41.

    Google Scholar 

  46. K.B. Efetov, J. Phys. (Paris) Lett. 44, L369 (1983).

    Google Scholar 

  47. D. Jérome, in ref. 6.

    Google Scholar 

  48. C. Coulon et al., J. Phys. (Paris) 43, 1059 (1982).

    Google Scholar 

  49. S.S.P. Parkin et al., Phys. Rev. B 26, 6319 (1982); C. Coulon et al., ibid. 26, 6322 (1982).

    Google Scholar 

  50. F. Creuzet et al., in ref. 6.

    Google Scholar 

  51. S.S.P. Parkin et al., Mol. Cryst. Liq. Cryst. 79, 605 (1982), and footnote in ref. 5, p. C3-791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gyula Hutiray Jenö Sólyom

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Schulz, H.J. (1985). (TMTSF)2X compounds: Superconductivity, spin-density waves and anion ordering. In: Hutiray, G., Sólyom, J. (eds) Charge Density Waves in Solids. Lecture Notes in Physics, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-13913-3_251

Download citation

  • DOI: https://doi.org/10.1007/3-540-13913-3_251

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13913-3

  • Online ISBN: 978-3-540-39137-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics