A time dependent secondary electron transport model

  • J. Devooght
  • J. C. Dehaes
  • A. Dubus
  • N. Hollasky
Theory, Solid Target
Part of the Lecture Notes in Physics book series (LNP, volume 213)


A model has been developed which gives explicit formulation of the energy, radial, time and angular dependence of outgoing secondary electrons, some of which were previously available only through Monte Carlo simulation. The cross-sections are arbitrary as well as the source. The model has been tested by evaluating some static characteristics and comparing them with other available experimental and theoretical results. The general agreement is fairly good. Numerical results for time dependence will be investigated next.


Secondary Electron Elastic Scattering Steady State Production Neutron Transport Theory Solvable Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Sigmund, S. Tougaard, Springer Ser. Chem. Phys. 17, Springer Verlag (1981).Google Scholar
  2. 2.
    J.P. Ganachaud, M. Cailler, Surf. Sci. 83, 498 (1979).CrossRefGoogle Scholar
  3. 3.
    M.M.R. Williams, Progress in Nuclear Energy, 3, 1–65 (1979).CrossRefGoogle Scholar
  4. 4.
    C.J. Tung, R.H. Ritchie, Phys. Rev. B.16, 4302 (1977).CrossRefGoogle Scholar
  5. 5.
    J.C. Ashley, C.J. Tung, R.H. Ritchie Surf. Sci., 81, 409 (1979).CrossRefGoogle Scholar
  6. 6.
    M.S. Chung, T.E. Everhart, Phys. Rev. B.15, 4699 (1977).CrossRefGoogle Scholar
  7. 7.
    M. Rösler, W. Brauer, Phys. Stat. Sol., 104 (I), 161–175 (II), 575–587.Google Scholar
  8. 8.
    J. Schou, Phys. Rev., B.22, 2141 (1980).CrossRefGoogle Scholar
  9. 9.
    B.R. Wienke, J. Quant. Spectrosc. Radiat. Transfer., 22, 301 (1979).CrossRefGoogle Scholar
  10. 10.
    J.E. Morel, Nucl. Sc. Eng., 71, 64 (1979).Google Scholar
  11. 11.
    P.A. Wolff, Phys. Rev., 95, 56 (1954).CrossRefGoogle Scholar
  12. 12.
    H. Lanteri, R. Bindi, P. Rostaing, J. Phys. D. Appl. Phys. 13, 677–92 (1980).CrossRefGoogle Scholar
  13. 13.
    L.V. Spencer, Phys. Rev. 98, 1597 (1955).CrossRefGoogle Scholar
  14. 14.
    B. Davison, Neutron Transport Theory, Oxford University Press (1957).Google Scholar
  15. 15.
    T. Koshikawa, R. Shimizu, J. Phys. D. Appl. Phys. 7, 1303–1315 (1974).CrossRefGoogle Scholar
  16. 16.
    D. Roptin, Thesis (University of Nantes, 1975) (unpublished).Google Scholar
  17. 17.
    T.E. Everhart, N. Saeki, R. Shimizu and T. Koshikawa, J. Appl. Phys. 47, 2941 (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Devooght
    • 1
  • J. C. Dehaes
    • 1
  • A. Dubus
    • 1
  • N. Hollasky
    • 1
  1. 1.Service de Métrologie Nucléaire, C.P. 165Université Libre de BruxellesBruxellesBelgium

Personalised recommendations