Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 66))

Abstract

The aim of this review article is to discuss the type of information which can be obtained concerning orientation in polymers by spectroscopic methods and to select examples which illustrate key problems in the area of polymer physics.

As a prelude to the discussion it is necessary to consider the definition of orientation in terms of the Euler angles, and the definition of an orientation distribution function in terms of an expansion of Legendre functions. These definitions set the scene for examining the information which can be obtained from different spectroscopic techniques. In this review, infra-red and Raman spectroscopy and nuclear magnetic resonance, will be considered.

Information on molecular orientation can be useful in two primary ways. First, it is possible to use the orientation functions or averages to gain an understanding of the mechanisms of plastic deformation. Secondly the orientation averages can provide a basis for understanding the influence of molecular orientation on physical properties, especially mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

Absorption

D:

Optical density

E:

Electric vector

fa :

Amorphous orientation average

fc :

Crystalline orientation average

I:

Nuclear spin number

Is :

Scattered intensity

I′:

Scattered intensity

IT :

Transmitted intensity

ki :

Imaginary part of complex principal refractive index

Δn:

Birefringence

ni :

Real part of complex principal refractive index

N:

Number of absorbing species per unit volume, Number of nuclei over which sum is taken

N′:

Number of random links per chain

N(ϑ, φ, ψ):

Distribution function of orientation for structural units

N′(β, γ):

Distribution function of orientation for spectroscopic effect studied

No :

Number of effective scatterers

p1mn :

Spherical harmonic function

P1mn :

Averages of p1mn

r:

Ratio of principal components of differential polarizability tensor

r j :

Direction in a structural unit

S:

Lattice sum

xcryst :

Crystalline fraction

xtrans :

Fraction of trans conformers

xi :

Rectangular coordinate axes in a structural unit

Xi :

Rectangular coordinate axes in the sample

Y e1m :

Generalised Legendre function

Z1mn :

Generalised Legendre function

αi :

Principal component of differential polarizability tensor

α ei :

Principal component of electronic polarizability tensor

β:

Polar angle defined with respect to a structural unit

γ:

Azimuthal angle defined with respect to a structural unit

λ:

Infra-red wavelength, Draw ratio

μ:

Transition dipole moment

μn :

Nuclear Magneton

ϱ(ϑ, φ):

Distribution function

Ï‘:

Euler angle

φ:

Euler angle

ψ:

Euler angle

φi :

Infra-red quantity

ξ:

Polar angle defined with respect to sample

η:

Azimuthal angle defined with respect to sample

9 References

  1. Nobbs, J. H., Ward, I. M.: Polarized fluorescence in oriented polymers, in: Photoluminescence of Synthetic Polymers (ed.) Phillips, D. C. Chap. 7, Chapman & Hall Ltd., London (1984)

    Google Scholar 

  2. Ward, I. M.: Structure and Properties of Oriented Polymers, Applied Science Publishers Ltd., London (1975)

    Google Scholar 

  3. Ward, I. M.: J. Polym. Sci., Polymer Symposium 58, 1 (1977)

    Google Scholar 

  4. Cunningham, A., Davies, G. R. and Ward, I. M.: Polymer 15, 743 (1974)

    Google Scholar 

  5. Jarvis, D. A. et al.: Polymer 21, 41 (1980)

    Google Scholar 

  6. Hutchinson, I. J. et al.: Polymer 21, 55 (1980)

    Google Scholar 

  7. Bower, D. I.: J. Polym. Sci., Polym. Phys. Edn. 10, 2135 (1972)

    Google Scholar 

  8. Van Vleck, J. H.: Phys. Rev. 74, 1168 (1949)

    Google Scholar 

  9. McBrierty, V. J., Ward, I. M.: J. Phys. D. Appl. Phys. 1, 1529 (1968)

    Google Scholar 

  10. Kashiwagi, M. et al.: Polymer 14, 111 (1973)

    Google Scholar 

  11. Cunningham, A., Manuel, A. J., Ward, I. M.: Polymer 17, 125 (1976)

    Google Scholar 

  12. McBrierty, V. J., McDonald, I. R., Ward, I. M.: J. Phys. D. Appl. Phys. 4, 88 (1971)

    Google Scholar 

  13. Bower, D. I.: J. Polym. Sci.; Polym. Phys. Edn. 19, 93 (1981)

    Google Scholar 

  14. Kratky, O.: Kolloid Z. 64, 213 (1933)

    Google Scholar 

  15. Ward, I. M.: Mechanical Properties of Solid Polymers. Second Edition, p. 287. John Wiley & Sons, Ltd., Chichester, (1983)

    Google Scholar 

  16. Richardson, I. D., Ward, I. M.: J. Phys. D. Appl. Phys. 3, 643 (1970)

    Google Scholar 

  17. Cunningham, A.: Ph. D. Thesis, Leeds University (1974)

    Google Scholar 

  18. R. S. Stein

    Google Scholar 

  19. Kuhn, W., Grün, W.: Kolloid Z. 101, 248 (1942)

    Google Scholar 

  20. Treloar, L. R. G.: Trans. Faraday Soc. 50, 881 (1954)

    Google Scholar 

  21. Roe, R. J., Krigbaum, W. R.: J. Appl. Phys. 35, 2215 (1964)

    Google Scholar 

  22. Purvis, J., Bower, D. I.: J. Polym. Sci., Polym. Phys. Ed. 14, 1461 (1976)

    Google Scholar 

  23. Nobbs, J. H., Bower, D. I.: Polymer 19, 1100 (1978)

    Google Scholar 

  24. Nobbs, J. H., Bower, D. I., Ward, I. M.: J. Polym. Sci., Polym. Phys. Ed. 17, 259 (1979)

    Google Scholar 

  25. Raha, S., Bowden, P. B.: Polymer 13, 174 (1972)

    Google Scholar 

  26. Rietsch, F., Duckett, R. A., Ward, I. M.: Polymer 20, 1133 (1979)

    Google Scholar 

  27. Grime, D., Ward, I. M.: Trans. Faraday Soc. 54, 959 (1958)

    Google Scholar 

  28. Cunningham, A. et al.: Polymer 15, 749 (1974)

    Google Scholar 

  29. Padibjo, S. R., Ward, I. M.: Polymer 24, 1103 (1983)

    Google Scholar 

  30. Boye, Jr. C. A., Overton, J. R.: Bull. Phys. Soc. Ser. 2, 19, 352 (1974)

    Google Scholar 

  31. Jakeways, R. et al.: J. Polym. Sci., Polym. Phys. Edn. 13, 799 (1975)

    Google Scholar 

  32. Hall, I. H., Pass, M. G.: Polymer 17, 807 (1976)

    Google Scholar 

  33. Desborough, I. J., Hall, I. H.: Polymer 18, 825 (1977)

    Google Scholar 

  34. Yokouchi, M. et al.: Macromolecules 9, 266 (1976)

    Google Scholar 

  35. Stambough, B. D., Koenig, J. L., Lando, J. B.: J. Polym. Sci., Polym. Phys. Edn. 17, 1053 (1979)

    Google Scholar 

  36. Davidson, I. S., Manuel, A. J., Ward, I. M.: Polymer 24, 30 (1983)

    Google Scholar 

  37. Prevorsek, D. C. et al.: J. Macromol. Sci., B. 8, 127 (1973)

    Google Scholar 

  38. Ward, I. M.: Mechanical Properties of Solid Polymers. Second Edition, p. 295. John Wiley & Sons, Ltd., Chichester, (1983)

    Google Scholar 

  39. Lewis, E. L. V., Ward, I. M.: J. Mater. Sci. 15, 2354 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. H. Kaush H. G. Zachman

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Ward, I.M. (1985). Determination of molecular orientation by spectroscopic techniques. In: Kaush, H.H., Zachman, H.G. (eds) Characterization of Polymers in the Solid State I: Part A: NMR and Other Spectroscopic Methods Part B: Mechanical Methods. Advances in Polymer Science, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-13779-3_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-13779-3_18

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13779-5

  • Online ISBN: 978-3-540-39043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics