Mean field methods in large amplitude nuclear collective motion

  • K. Goeke
  • F. Grümmer
  • P. -G. Reinhard
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 209)


The time dependent Hartree-Fock method (TDHF) is reviewed and its success and failure are discussed. It is demonstrated that TDHF is a semiclassical theory which is basically able to describe the time evolution of one-body operators, the energy loss in inclusive deep inelastic collisions, and fusion reactions above the Coulomb barrier. For genuine quantum mechanical processes as e.g. spontaneous fission, subbarrier fusion, phase shifts and the description of bound vibrations, the quantized adiabatic time dependent Hartree-Fock theory (quantized ATDHF) is suggested and reviewed. Realistic three-dimensional calculations for heavy ion systems of A1+A2<32 are presented. Applications to various nuclear observables as e.g. astrophysical S-factors in subbarrier fusion, ground state rotational bands, elastic HI-scattering, etc., are shown. The decoupling properties of ATDHF-paths are discussed in detail. Recent theories based on path integral approaches (PIA) are reviewed, which aim at quantizing TDHF in order to describe stationary vibrational states and subbarrier fusion. The relationship of quantized ATDHF to PIA is explored in the case of bound vibrations. A derivation of the quantization prescription by means of the generator coordinate method is presented. The above methods to go beyond TDHF concern the quantum mechanical content of TDHF. For the description of width of one-body observables in inclusive reactions the time dependent generator coordinate method (TDGCM) is reviewed. It appears in one-dimensional calculations as able to enlarge the fluctuations of one-body observables, obtained in TDHF, by an order of magnitude.


Collective Motion Fusion Cross Section Collision Term Slater Determinant Path Integral Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bonche, S. Koonin, J. Negele, Phys. Rev. C13 (1976) 1226.Google Scholar
  2. 2.
    R.Y. Cusson, J.A. Maruhn, W.A. Meldner, Phys. Rev. C18 (1978) 2589.Google Scholar
  3. 3.
    K.T.R. Davies, K.R. Sandhya-Devi, M.R. Strayer, Phys. Rev. C20 (1978) 1372.Google Scholar
  4. 4.
    J.W. Negele, Rev. Mod. Phys. 54 (1982) 913.Google Scholar
  5. 5.
    “Time Dependent Hartree-Fock and Beyond”, Proc. Int. Meeting at Bad Honnef, June 7–11, 1982, ed. by K. Goeke and P.-G. Reinhard, Lecture Notes in Physics, Springer-Verlag, 1982.Google Scholar
  6. 6.
    G. Holzwarth, T. Yukawa, Nucl. Phys. A219 (1974) 125.Google Scholar
  7. 7.
    D.J. Rowe, R. Bassermann, Can. J. Phys. 54 (1976) 1941.Google Scholar
  8. 8.
    T. Marumori, Prog. Theor. Phys. 57 (1977) 112.Google Scholar
  9. 9.
    F. Villars, Nucl. Phys. A285 (1977) 269.Google Scholar
  10. 10.
    K. Goeke, P.-G. Reinhard, Ann. Phys. 112 (1978) 328.Google Scholar
  11. 11.
    M. Baranger, M. Veneroni, Ann. Phys. 114 (1978) 123.Google Scholar
  12. 12.
    P.-G. Reinhard, K. Goeke, Nucl. Phys. A312 (1978) 121.Google Scholar
  13. 13.
    P.-G. Reinhard, K. Goeke, Phys. Rev. C20 (1979) 1546.Google Scholar
  14. 14.
    P.-G. Reinhard, J.A. Maruhn, K. Goeke, Phys. Rev. Lett. 44 (1980) 1740.Google Scholar
  15. 15.
    H. Reinhardt, Nucl. Phys. A346 (1980) 1.Google Scholar
  16. 16.
    S. Levit, J. Negele, Z. Paltiel, Phys. Rev. C21 (1980) 1603.Google Scholar
  17. 17.
    M. Kuratsuji, T. Suzuki, Phys. Lett. 92B (1980) 19.Google Scholar
  18. 18.
    J.P. Blaizot, M. Orland, J. Phys. 41 (1980) L53.Google Scholar
  19. 19.
    P.-G. Reinhard, K. Goeke, R.Y. Cusson, Z. Phys. A295 (1980) 45.Google Scholar
  20. 20.
    P.-G. Reinhard, R.Y. Cusson, K. Goeke, Nucl. Phys. A398 (1983) 141.Google Scholar
  21. 21.
    C.Y. Wong, H.H. Tang, Phys. Rev. Lett. 40 (1978) 1070.Google Scholar
  22. 22.
    H.S. Köhler, Nucl. Phys. A343 (1980) 315.Google Scholar
  23. 23.
    P. Grange, H.A. Weidenmüller, G. Wolschin, Ann. Phys. 136 (1981) 190.Google Scholar
  24. 24.
    R. Balian, M. Vénéroni, Ann. Phys.Google Scholar
  25. 25.
    S. Ayik, Z. Phys. A298 (1980) 83.Google Scholar
  26. 26.
    A.F.R. de Toledo Piza, see Proc. of Ref. 5.Google Scholar
  27. 27.
    H.C. Pauli, see Proc. of Ref. 5.Google Scholar
  28. 28.
    K. Goeke, P.-G. Reinhard, D.J. Rowe, Nucl. Phys. A359 (1981) 408.Google Scholar
  29. 29.
    D.J. Rowe, A. Ryman, J. Math. Phys. 23 (1982) 732.Google Scholar
  30. 30.
    H. Flocard, P.H. Heenen, D. Vautherin, Nucl. Phys. A339 (1980) 336.Google Scholar
  31. 31.
    K.K. Kan, J.J. Griffin, P.C. Lichtner, M. Dworzecka, Nucl. Phys. A332 (1979) 109.Google Scholar
  32. 32.
    K. Goeke, P.-G. Reinhard, H. Reinhardt, Nucl. Phys. A378 (1982) 474.Google Scholar
  33. 33.
    H. Feldmeier, see Proc. of Ref. 5.Google Scholar
  34. 34.
    G. Wolschin, see Proc. of Ref. 5.Google Scholar
  35. 35.
    K. Goeke, P.-G. Reinhard, Ann. Phys. 124 (1980) 249.Google Scholar
  36. 36.
    K. Goeke, F. Grümmer, P.-G. Reinhard, Phys. Lett. B124 (1983) 21.Google Scholar
  37. 37.
    K. Goeke, F. Grümmer, P.-G. Reinhard, Ann. Phys. 150 (1983) 504.Google Scholar
  38. 38.
    P.-G. Reinhard, J. Friedrich, K. Goeke, F. Grümmer, D.H.E. Gross, to be published.Google Scholar
  39. 39.
    K. Goeke, P.-G. Reinhard, J. Phys. G6 (1978) L245.Google Scholar
  40. 40.
    K. Goeke, P.-G. Reinhard, J.N. Urbano, in preparation.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • K. Goeke
    • 1
    • 2
  • F. Grümmer
    • 1
  • P. -G. Reinhard
    • 3
  1. 1.Kernforschungsanlage JülichInstitut für KernphysikJülichWest Germany
  2. 2.Institut für Theoretische KernphysikUniversitat BonnBonnWest Germany
  3. 3.Institut für KernphysikUniversität MainzMainzWest Germany

Personalised recommendations