Advertisement

Supersymmetry, compositeness and a new approach to generation problem

  • Rabindra N. Mohapatra
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 208)

Abstract

After a brief review of the various aspects of composite models of quarks and leptons, we present the quasi-Nambu-Goldstone phenomena as the basis for supersymmetric composite model building. Using this approach, we propose a new way to understand the generation problem and fermion mass hierarchies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent review and references, see L. Lyons, Oxford report 52/82 (1982). R.N. Mohapatra, Neutrino mass mini-conference, Telemark, edited by V. Barger and D. Cline, A.I.P. publication (1983).Google Scholar
  2. 2.
    G.'t Hooft, in Recent Developments in Gauge Theories ed. by G.'t Hooft et al (Plenum press, N.Y. 1980), p.135. R. Casalbuoni and R. Gatto, Phys. Lett. 93B, 47 (1980). O.W. Greenberg and J. Sucher, Phys. Lett. 99B, 3(1981).Google Scholar
  3. 3.
    S.J. Brodsky and S.D. Drell, Phys. Rev. D22, 2236 (1980); G.L. Shaw, D. Silverman and R. Slansky, Phys. Lett. 94B, 57 (1980); M. Abolins et al, Proc. of 1982 DPF Summer Study, edited R. Donaldson, et al (Fermi Lab, 1983) p.274.Google Scholar
  4. 4.
    T. Banks, S. Yankielowicz and A. Schwimmer, Phys. Lett. 96B, 67 (1980); I. Bars, NUC. Phys. B198, 269 (1982); J.M. Gérar=, J. Govaerts, Y. Meurice and J. Weyers, Phys. Lett. 116B, 29 (1982).Google Scholar
  5. 5.
    W. Buchmüller, R.D. Peccei and T. Yanagida, Phys. Lett. 124B, 67 (1983). Nuc. Phys.Google Scholar
  6. 6.
    O.W. Greenberg, R.N. Mohapatra and M. Yasue, Phys. Lett. 128B, 65 (1983); Phys. Rev. Lett. 51, 1737 (1983); Nuc. Phys. B237, 185 (1984).Google Scholar
  7. 7.
    J.C. Pati in Neutrino Physics and Astrophysics, edited by E. Fiorini (Plenum, New York, 1982) p.275; O.W. Greenberg and J. Sucher, ref.2.Google Scholar
  8. 8.
    R. Barbieri, R.N. Mohapatra and A. Masiero, Phys. Lett. 105B, 369 (1981).Google Scholar
  9. 9.
    C. Lee and H. Sharatchandra, Max Planck Preprint (1983); W. Lerche, Max Planck Preprint, (1983); T. Kugo, T. Yanagida, and T. Ojima; Max Planck Preprint; S. Kalara, University of Rochester Preprint (1983); O.W. Greenberg et al, in preparation; D. Lust and W. Lerche, Max Planck Preprint (1983).Google Scholar
  10. 10.
    B. Ovrut and J. Wess, Phys. Rev. D25, 1608 (1982).Google Scholar
  11. 11.
    R. Barbieri, A. Masiero and G. Veneziano, Phys. Lett. 128B, 179 (1983).Google Scholar
  12. 12.
    Note that SU(4)L,R gauge symmetry must be broken at a higher scale (ti 102 TeV) to be consistent with the upper limit for the branching ratio of r(KL → μie)/r(K → everything). Such broken gauge symmetries with weak couplings gc << 4n may be present in the theory. They will not effect our considerations, since we let all such couplings go to zero, in considering both quasi-Nambu-Goldstone phenomena and 't Hooft anomaly matching.Google Scholar
  13. 13.
    Here we may envisage embedding the theory in an N=l supergravity with supersymmetry breaking scale being at 1012 GeV. The effective supersymmetry breaking scale at low energies is given by the gravitino mass mg which can be 102-103 GeV.Google Scholar
  14. 14.
    H.P. Nilles, Phys. Lett. 112B, 455 (1982); G. Veneziano and S. Yankielowicz, Phys. Lett. 11B, 231 (1982); T.R. Taylor, G. Veneziano and S. Yankielowi z, Nuc. Phys. B218, 493 (1983).Google Scholar
  15. 15.
    For an attempt in this direction, see, M. Yasue, R.N. Mohapatra and J.C. Pati, in preparation. *** DIRECT SUPPORT *** A3418165 00003Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandMaryland

Personalised recommendations