Numerical simulations — Canonical and microcanonical

  • Gyan Bhanot
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 208)


A brief review of numerical simulation methods is given. After describing convergence criteria for the usual (canonical ensemble) Monte-Carlo methods, a numerical study of the microcanonical ensemble for Ising-like systems is described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Wilson, Phys. Rev. D10 (1974) 2445Google Scholar
  2. [2]
    M. Creutz, “Quarks, Gluons and Lattices” (Cambridge Univ, Press, 1983)Google Scholar
  3. [3]
    M. Creutz, L. Jacobs and C. Rebbi, Phys. Rep. 95 (1983) 201Google Scholar
  4. [4]
    C. Rebbi, “Lattice Gauge Theory and Monte Carlo Simulations” (World Scientific, Singapore, 1983)Google Scholar
  5. [5]
    K. Binder in “Phase Transitions and Critical Phenomena”, C. Domb and M. S. Green, eds. Vol. 5B (Academic Press, New York, 1976)Google Scholar
  6. [6]
    F. R. Gantmacher, “Applications of the Theory of Matrices”, (Interscience, N.Y. 1959). Translated by J. L. Brenner.Google Scholar
  7. [7]
    G. Bhanot, “A Review of Numerical Simulation Methods”, ed. A. Faessler, in Progress in Particle and Nuclear Physics, (Pergamon Press Ltd., 1984)Google Scholar
  8. [8]
    D. Callaway and A. Rahman, Phys. Rev. Lett. 49 (1982) 613Google Scholar
  9. [9]
    M. Creutz, Phys. Rev. Lett. 50 (1983) 1411Google Scholar
  10. [10]
    G. Bhanot, M. Creutz and H. Neuberger, IAS preprint, “Microcanonical Simulation of Ising Systems”, Nov. 1983, to appear in Nucl. Phys. B [FS]Google Scholar
  11. [11]
    See [10] for detailsGoogle Scholar
  12. [12]
    A. Strominger, Ann. Phys. 146 (1983) 419Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Gyan Bhanot
    • 1
  1. 1.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations