Skip to main content

Universal quantifiers and time complexity of random access machines

  • Section V: Spektralproblem
  • Conference paper
  • First Online:
Logic and Machines: Decision Problems and Complexity (LaM 1983)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 171))

Included in the following conference series:

Abstract

Let Sp(d∨) denote the class of spectra of first-order sentences with d universal quantifiers. Let NRAM(T(n)) denote the class of sets (of positive integers) accepted by Nondeterministic Random Access Machines (with successor as the only arithmetical operation), in time O(T(n)) where n is the input integer. We prove Sp(d∨) = NRAM(nd) for d≥2.

A similar result holds for generalized spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, Reading (1974).

    Google Scholar 

  2. S.A. Cook, A hierarchy for nondeterministic time complexity, J. Comput. Systems Sci. 7 (1973), pp. 343–353.

    Google Scholar 

  3. S.A. Cook and R.A. Reckhow, Time bounded Random Access Machines, J. Comput. Systems Sci. 7 (1973), pp. 354–375.

    Google Scholar 

  4. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, Complexity of computations, R.M. Karp ed., Amer. Math. Soc., Providence (1974), pp. 43–73.

    Google Scholar 

  5. R. Fagin, A spectrum hierarchy, Z. Math. Logik. Grundlag. Math. 21 (1975), pp. 123–134.

    Google Scholar 

  6. E. Grandjean, The spectra of first-order sentences and computational complexity, to appear in SIAM J. Comput.

    Google Scholar 

  7. N. Immerman, Number of quantifiers is better than number of tape cells, J. Comput. Systems Sci. 22 (1981), pp. 384–406.

    Google Scholar 

  8. N. Immerman, Upper and lower bounds for first-order expressibility, J. Comput. Systems Sci. 25, 1 (1982).

    Google Scholar 

  9. N. Immerman, Languages which capture complexity classes, 15th ACM SIGACT Symp. (1983), pp. 1–16.

    Google Scholar 

  10. N.D. Jones and A.L. Selman, Turing machines and the spectra of first-order formulas with equality, J. Symb. Logic 39 (1974), pp. 139–150.

    Google Scholar 

  11. H.R. Lewis, Complexity results for classes of quantificational formulas, J. Comput. Systems Sci. 21 (1980), pp. 317–353.

    Google Scholar 

  12. L. Lovász and P. Gács, Some remarks on generalized spectra, Z. Math. Logik. Grundlag. Math. 23 (1977), pp. 547–553.

    Google Scholar 

  13. J.F. Lynch, Complexity classes and theories of finite models, Math. Systems Theory 15 (1982), pp. 127–144.

    Google Scholar 

  14. B. Monien, Characterizations of time-bounded computations by limited primitive recursion, 2nd Int. Colloq. Automata Languages Programming, Springer, Berlin (1974), pp. 280–293.

    Google Scholar 

  15. B. Monien, About the derivation languages of grammars and machines, 4th Int. Colloq. Automata Languages Programming (1977), pp. 337–351.

    Google Scholar 

  16. P. Pudlák, The observational predicate calculus and complexity of computations, Comment. Math. Univ. Carolin. 16 (1975), pp. 395–398.

    Google Scholar 

  17. A. Schönhage, Storage Modification Machines, SIAM J. Comput. 9 (1980), pp. 490–508.

    Google Scholar 

  18. J.I. Seiferas, M.J. Fisher and A.R. Meyer, Separating nondeterministic time complexity classes, J. Assoc. Comput. Mach. 25 (1978), pp. 146–167.

    Google Scholar 

  19. R. Weicker, Turing machines with associative memory access, 2nd Int. Colloq. Automata Languages Programming (1974), pp. 458–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Börger G. Hasenjaeger D. Rödding

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grandjean, E. (1984). Universal quantifiers and time complexity of random access machines. In: Börger, E., Hasenjaeger, G., Rödding, D. (eds) Logic and Machines: Decision Problems and Complexity. LaM 1983. Lecture Notes in Computer Science, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-13331-3_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-13331-3_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13331-5

  • Online ISBN: 978-3-540-38856-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics