Extensible algorithms

  • Hans-Georg Carstens
  • Peter Päppinghaus
Section II: Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)


Bipartite Graph Linear Integer Programming Partial Function Finite Sequence Time Table 


  1. [B]
    Bean, D.R., Recursive Euler and Hamilton paths, Proceedings of the American Mathematical Society, 55 (1976), 385–394.Google Scholar
  2. [C]
    Carstens, H.-G., Recursive colorings on surfaces, to appear.Google Scholar
  3. [CP 1]
    Carstens, H.-G., Päppinghaus, P., Recursive coloration of countable graphs, Annals of Pure and Applied Logic 25 (1983), 19–45.Google Scholar
  4. [CP 2]
    Carstens, H.-G., Päppinghaus, P., Abstract construction of counterexamples in recursive graph theory, to appear.Google Scholar
  5. [FF]
    Ford, L.R., Fulkerson, D.R., Flows in networks, Princeton University Press, N.J., 1962.Google Scholar
  6. [H]
    Harary, F., Graph Theory, Reading (Mass.), 1969.Google Scholar
  7. [K]
    Kierstead, H.A., Recursive colorings of highly recursive graphs, Canadian Journal of Mathematics, 33 (1981), 1279–1290.Google Scholar
  8. [MR 1]
    Manaster, A.B., Rosenstein, J.G., Effective match making (Recursion theoretic aspects of a theorem of Phillip Hall), Proceedings of the London Mathematical Society, 25 (1972), 615–645.Google Scholar
  9. [MR 2]
    Manaster, A.B., Rosenstein, J.G., Effective match making and k-chromatic graphs, Proceedings of the American Mathematical Society, 39 (1973), 371–379.Google Scholar
  10. [Sch 1]
    Schmerl, J.H., Recursive colorings of graphs, Canadian Journal of Mathematics, 32 (1980), 821–830.Google Scholar
  11. [Sch 2]
    Schmerl, J.H., The effective version of Brook's theorem, Canadian Journal of Mathematics, 34 (1982), 1036–1046.Google Scholar
  12. [Sh]
    Shoenfield, J.R., Mathematical Logic, Reading (Mass.), 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Hans-Georg Carstens
    • 1
    • 2
  • Peter Päppinghaus
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of BielefeldBielefeldFed. Rep. of Germany
  2. 2.Institute of MathematicsUniversity of HannoverHannoverFed. Rep. of Germany

Personalised recommendations