Skip to main content

Instabilities and transition in flow between concentric rotating cylinders

  • Chapter
  • First Online:
Hydrodynamic Instabilities and the Transition to Turbulence

Part of the book series: Topics in Applied Physics ((TAP,volume 45))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mallock: Determination of the viscosity of water. Proc. R. Soc. London A 45, 126–132 (1888)

    Google Scholar 

  2. A. Mallock: Experiments on fluid viscosity. Philos. Trans. R. Soc. London A187, 41–56 (1896)

    Google Scholar 

  3. M. M. Couette: Études sur le frottement des liquides. Ann. Chim. Phys. 6, Ser. 21, 433–510 (1890)

    Google Scholar 

  4. G. I. Taylor: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. London A 223, 289–343 (1923)

    Google Scholar 

  5. E. L. Koschmieder: Turbulent Taylor vortex flow. J. Fluid Mech. 93, 515–527 (1979)

    Google Scholar 

  6. D. Coles: Transition in circular Couette flow. J. Fluid Mech. 21, 385–425 (1965)

    Google Scholar 

  7. P. R. Fenstermacher, H. L. Swinney, J. P. Gollub: Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103–129 (1979)

    Google Scholar 

  8. J. Serrin: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1–13 (1959)

    Google Scholar 

  9. D. D. Joseph, B. R. Munson: Global stability of spiral flow. J. Fluid Mech. 43, 545–575 (1970)

    Google Scholar 

  10. D. D. Joseph: Stability of Fluid Motions I, Springer Tracts in Natural Philosophy, Vol, 27 (Springer, Berlin, Heidelberg, New York 1976)

    Google Scholar 

  11. W. L. Hung: “Stability of Couette Flow by the Method of Energy”; M. S. Thesis, University of Minnesota (1978)

    Google Scholar 

  12. G.P.Neitzel: Private communication (1978)

    Google Scholar 

  13. D. D. Joseph, W. Hung: Contributions to the nonlinear theory of stability of viscous flow in pipes and between rotating cylinders. Arch. Ration. Mech. Anal. 44, 1–22 (1971)

    Google Scholar 

  14. E. R. Krueger, A. Gross, R. C. Di Prima: On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 24, 521–538 (1966)

    Google Scholar 

  15. Lord Rayleigh: On the dynamics of revolving fluids. Proc. R. Soc. London A 93, 148–154 (1916)

    Google Scholar 

  16. T. von Kármán: 0ome aspects of the turbulence problem. Proc. 4th Int. Cong. Appl. Mech. (Cambridge, 1934) pp. 54–91

    Google Scholar 

  17. C. C. Lin: The Theory of Hydrodynamic Stability (Cambridge University Press, Cambridge 1955)

    Google Scholar 

  18. J. L. Synge: The stability of heterogeneous liquids. Trans. R. Soc. Canada 27, 1–18 (1933)

    Google Scholar 

  19. J. L. Synge: On the stability of a viscous liquid between two rotating coaxial cylinders. Proc. R. Soc. London A 167, 250–256 (1938)

    Google Scholar 

  20. F. Schultz-Grunow: Zur Stabilität der Couette Strömung. Z. Angew. Math. Mech. 39, 101–110 (1959)

    Google Scholar 

  21. F.Schultz-Grunow: On the stability of Couette flow. NATO Advisory Group for Aeronautical Research and Development, Report 265 (1960)

    Google Scholar 

  22. F. Schultz-Grunow: Stabilität einer rotierenden Flüssigkeit. Z. Angew. Math. Mech. 43, 411–415 (1963)

    Google Scholar 

  23. R. C. Di Prima, R. N. Grannick: “A Non-linear Investigation of the Stability of Flow Between Counter-rotating Cylinders”, in Instability of Continuous Systems, ed. by H. Leipholz (Springer, Berlin, Heidelberg, New York 1971) pp. 55–60

    Google Scholar 

  24. A. Davey. The growth of Taylor vortices in flow between rotating cylinders, J. Fluid Mech. 14, 336–368 (1962)

    Google Scholar 

  25. J. T. Stuart: On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1, The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353–370 (1960)

    Google Scholar 

  26. J. Watson: On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9, 371–389 (1960)

    Google Scholar 

  27. A. Davey, R. C. Di Prima, J. T. Stuart: On the instability of Taylor vortices. J. Fluid Mech. 31, 17–52 (1968)

    Google Scholar 

  28. J. P. Gollub, H. L. Swinney: Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975)

    Google Scholar 

  29. R. W. Walden, R. J. Donnelly: Reemergent order of chaotic circular Couette flow. Phys. Rev. Lett. 42, 301–304 (1979)

    Google Scholar 

  30. S. Chandrasekhar: Hxdrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford 1961) p. 303

    Google Scholar 

  31. C. S. Yih: Spectral theory of Taylor vortices. Part II: Proof of nonoscillation. Arch. Ration. Mech. Anal. 47, 288–300 (1972)

    Google Scholar 

  32. K. N. Astill, K. C. Chung: A numerical study of instability of the flow between rotating cylinders. Am. Soc. Mech. Eng. Pub. 76-FE-27 (1976)

    Google Scholar 

  33. K. Chung: “Stability Study of a Viscous Flow Between Rotating Coaxial Cylinders”; Ph.D. Thesis, Tufts University (1976)

    Google Scholar 

  34. E. M. Sparrow, W. D. Munro, V. K. Jonsson: Instability of the flow between rotating cylinders: the wide gap problem. J. Fluid Mech. 20, 35–46 (1974)

    Google Scholar 

  35. J. Walowit, S. Tsao, R. C. Di Prima: Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient. Trans. Am. Soc. Mech. Eng., J. Appl. Mech. 31, 585–593 (1964)

    Google Scholar 

  36. P. H. Roberts: The solution of the characteristic value problems, (Appendix to [6.65]). Proc. R. Soc. London A 283, 550–556 (1965)

    Google Scholar 

  37. R. C. Di Prima, G.J. Habetler: A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability. Arch. Ration. Mech. Anal. 34, 218–227 (1969)

    Google Scholar 

  38. R. C. Di Prima: Application of the Galerkin method to the calculation of the stability of curved flows. Quart. Appl. Math. 13, 55–62 (1955)

    Google Scholar 

  39. D. L. Harris, W. H. Reid: On the stability of viscous flow between rotating cylinders. Part 2. Numerical analysis. J. Fluid Mech. 20, 95–101 (1964)

    Google Scholar 

  40. R. L. Duty, W. H. Reid: On the stability of viscous flow between rotating cylinders. Part 1. Asymptotic analysis. J. Fluid Mech. 20, 81–94 (1964)

    Google Scholar 

  41. D. Coles: A note on Taylor instability in circular Couette flow. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 89, 527–534 (1967)

    Google Scholar 

  42. S. Kogelman, R. C. Di Prima: Stability of spatially periodic supercritical flows in hydrodynamics. Phys. Fluids 13, 1–11 (1970)

    Google Scholar 

  43. W. Eckhaus: Problémes non liénaires dans las theorie de la stability. J. Mécanique 1, 49–77 (1962)

    Google Scholar 

  44. W. Eckhaus: Problémes non linéaires de stabilité dans un espace á deux dimensions. Premiere partie: Solutions périodiques. J. Mécanique 1, 413–438 (1962)

    Google Scholar 

  45. W. Eckhaus: Studies in Non-Linear Stability Theory, Springer Tracts in Natural Philosophy, Vol. 6 (Springer, Berlin, Heidelberg, New York 1965)

    Google Scholar 

  46. R. C. Di Prima: “Vector Eigenfunction Expansions for the Growth of Taylor Vortices in the Flow Between Rotating Cylinders”, in Nonlinear Partial Differential Equations, ed. by W. F. Ames (Academic Press, New York 1967) pp. 19–42

    Google Scholar 

  47. W. Velte: Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylor-Problem. Arch. Ration. Mech. Anal. 22, 1–14 (1966)

    Google Scholar 

  48. K. Kirchgässner, P. Sorger: Branching analysis for the Taylor problem. Quart. J. Mech. Appl. Math. 22, 183–190 (1969)

    Google Scholar 

  49. V. I. Yudovich: Secondary flows and fluid instability between rotating cylinders. J. Appl. Math. Mech. 30, 822–833 (1966)

    Google Scholar 

  50. V. I. Yudovich: The bifurcation of a rotating flow of a liquid. Sov. Phys. Dokl. 11, 566–568 (1966)

    Google Scholar 

  51. I. P. Ivanilov, G. N. Iakovlev: The bifurcation of fluid flow between rotating cylinders. J. Appl. Math. Mech. 30, 910–916 (1966)

    Google Scholar 

  52. K. Kirchgässner, P. Sorger: “Stability Analysis of Branching Solutions of the Navier-Stokes Equations”, in Proceedings of the Twelfth International Congress of Applied Mechanics, 1968, ed. by M. Hetényi, W. G. Vincenti (Springer, Berlin, Heidelberg, New York 1969)

    Google Scholar 

  53. S. N. Ovchinnikova, V. I. Yudovich: Stability and bifurcation of Couette flow in the case of a narrow gap between rotating cylinders. J. Appl. Math. Mech. 34, 1025–1030 (1974)

    Google Scholar 

  54. R. C. Di Prima, P. M. Eagles: Amplification rates and torques for Taylor-vortex flows between rotating cylinders. Phys. Fluids 20, 171–175 (1977)

    Google Scholar 

  55. W. C. Reynolds, M. C. Potter: A finite amplitude state-selection theory for Taylor-vortex flow. Unpublished report, Dept. Mech. Eng. Stanford Univ. (1967); also see Bull. Am. Phys. Soc. 12, 834 (1967)

    Google Scholar 

  56. J. T. Stuart: In Annual Reviews of Fluid Mechanics, Vol. 3, (Annual Reviews, Palo Alto, CA, 1971) pp. 347–370

    Google Scholar 

  57. P. M. Eagles, J. T. Stuart, R. C. Di Prima: The effects of eccentricity on torque and load in Taylor-vortex flow. J. Fluid Mech. 87, 209–231 (1978)

    Google Scholar 

  58. W. Eckhaus: Problemes non-linéaries de stabilité dans un espace á deux dimensions. Deuxieme partie: Stabilité des solutions périodiques. J. Mécanique 2, 153–172 (1963)

    Google Scholar 

  59. C. Nakaya: Domain of stable periodic vortex flows in a viscous fluid between concentric circular cylinders. J. Phys. Soc. Jpn. 36, 1164–1173 (1974)

    Google Scholar 

  60. H. A. Snyder: Wavenumber selection at finite amplitude in rotating Couette flow. J. Fluid Mech. 35, 273–298 (1969)

    Google Scholar 

  61. H. A. Snyder: Change in waveform and mean flow associated with wavelength variations in rotating Couette flow. Part 1. J. Fluid Mech. 35, 337–352 (1969)

    Google Scholar 

  62. J. E. Burkhalter, E. L. Koschmieder: Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 17, 1929–1935 (1974)

    Google Scholar 

  63. E. L. Koschmieder: Stability of supercritical Bénard convection and Taylor vortex flow. Adv. Chem. Phys. 32, 109–133 (1975)

    Google Scholar 

  64. J. T. Stuart, R. C. Di Prima: The Eckhaus and Benjamin-Feir resonance mechanisms. Proc. R. Soc. London A 362, 27–41 (1978)

    Google Scholar 

  65. T. B. Benjamin, J. E. Feir: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)

    Google Scholar 

  66. R. J. Donnelly, K. W. Schwarz: Experiments on the stability of viscous flow between rotating cylinders. VI. Finite-amplitude experiments. Proc. R. Soc. London A 283, 531–546 (1965)

    Google Scholar 

  67. H. A. Snyder, R. B. Lambert: Harmonic generation in Taylor vortices between rotating cylinders. J. Fluid Mech. 26, 545–562 (1966)

    Google Scholar 

  68. J. P. Gollub, M. H. Freilich: Optical heterodyne test of perturbation expansions for the Taylor instability. Phys. Fluids 19, 618–626 (1976)

    Google Scholar 

  69. W. Debler, E. Füner, B. Schaaf: “Torque and Flow Patterns in Supercritical Circular Couette Flow”, in Proceedings of the Twelf th International Congress of Applied Mechanics, 1968, ed. by M. Hetényi, W. G. Vincenti (Springer, Berlin, Heidelberg, New York 1969)

    Google Scholar 

  70. J. A. Cole: Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75, 1–15 (1976)

    Google Scholar 

  71. R. W. Walden: “Transition to Turbulence in Couette Flow Between Concentric Cylinders”; Ph.D. Thesis, University of Oregon (1978)

    Google Scholar 

  72. K. W. Schwarz, B. E. Springett, R.J. Donnelly: Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech. 20, 281–289 (1964)

    Google Scholar 

  73. P. Castle, F. R. Mobbs: Hydrodynamic stability of the flow between eccentric rotating cylinders: visual observations and torque measurements. Proc. Inst. Mech. Eng. (London) 182, 41–52 (1967-68)

    Google Scholar 

  74. P. Castle, F. R. Mobbs, P. H. Markho: Visual observations and torque measurements in the Taylor vortex regime between eccentric rotating cylinders. J. Lub. Tech., Trans. Am. Soc. Mech. Eng. 93, 121–129 (1971)

    Google Scholar 

  75. P. H. Markho, C. D. Jones, F. R. Mobbs: Wavy modes of instability in the flow between eccentric rotating cylinders. J. Mech. Eng. Sci. 19, 76–80 (1977)

    Google Scholar 

  76. F. R. Mobbs, S. Preston, M. S. Ozogan: An experimental investigation of Taylor vortex waves. Taylor Vortex Flow Working Party, Leeds (1979)

    Google Scholar 

  77. R. C. Di Prima: Stability of nonrotationally symmetric disturbances for viscous flow between rotating cylinders. Phys. Fluids 4, 751–755 (1961)

    Google Scholar 

  78. P. M. Eagles: On stability of Taylor vortices by fifth-order amplitude expansions. J. Fluid Mech. 49, 529–550 (1971)

    Google Scholar 

  79. C. Nakaya: The second stability boundary for circular Couette flow. J. Phys. Soc. Jpn. 38, 576–585 (1975)

    Google Scholar 

  80. P. M. Eagles: On the torque of wavy vortices. J. Fluid Mech. 62, 1–9 (1974)

    Google Scholar 

  81. R. J. Donnelly: Experiments on the stability of viscous flow between rotating cylinders. I. Torque measurements. Proc. R. Soc. London A 246, 312–325 (1958)

    Google Scholar 

  82. R. J. Donnelly, N. J. Simon: An empirical torque relation for supercritical flow between rotating cylinders. J. Fluid Mech. 7, 401–418 (1960)

    Google Scholar 

  83. H. A. Snyder: Stability of rotating Couette flow. II. Comparison with numerical results. Phys. Fluids 11, 1599–1605 (1968)

    Google Scholar 

  84. F. Schultz-Grunow, H. Hein: Beitrag zur Couetteströmung. Z. Flugwiss. 4, 28–30 (1956)

    Google Scholar 

  85. J. W. Lewis: An experimental study of the motion of a viscous liquid contained between coaxial cylinders. Proc. R. Soc. London A 117, 388–407 (1928)

    Google Scholar 

  86. A. Townsend: Private communication (1979)

    Google Scholar 

  87. S.I.Pai: Turbulent flow between rotating cylinders. National Advisory Committee for Aeronautics Technical Note No. 892 (1943)

    Google Scholar 

  88. J. E. Burkhalter, E. L. Koschmieder: Steady supercritical Taylor vortex flow. J. Fluid Mech. 58, 547–560 (1973)

    Google Scholar 

  89. T. B. Benjamin: Bifurcation phenomena in steady flow of a viscous fluid. I. Theory. Proc. R. Soc. London A359, 1–26 (1978)

    Google Scholar 

  90. T. B. Benjamin: Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments. Proc. R. Soc. London A 359, 27–43 (1978)

    Google Scholar 

  91. H. L. Swinney, P. R. Fenstermacher, J. P. Gollub: Transition to turbulence in circular Couette flow, Turbulent Shear Flow Symposium (Pennsylvania State Univ., 1977) pp. 17.1–17.6

    Google Scholar 

  92. G. Cognet: Utilixation de la polargraphie pour l'étude de l'écoulement de Couette. J. Mécanique 10, 65–90 (1971)

    Google Scholar 

  93. A. Bouabdallah, G. Cognet: “Laminar-turbulent transition in Taylor-Couette flow”, in Laminar-Turbulent Transition, ed. by R. Eppler and H. Fasel (Springer, Berlin, Heidelberg, New York 1980) pp. 368–377

    Google Scholar 

  94. A. Barcilon, J. Brindley, M. Leesen, F. R. Mobbs: Marginal instability in Taylor-Couette flows at very high Taylor number. J. Fluid Mech. 94, 453–463 (1979)

    Google Scholar 

  95. H. A. Snyder: Waveforms in rotating Couette flow. Int. J. Non-Linear Mech. 5, 659–685 (1970)

    Google Scholar 

  96. R. K. Otnes, L. Enochson: Applied Time Series Analysis (John Wiley, New York 1978)

    Google Scholar 

  97. G. Ahlers: Low temperature studies of the Rayleigh-Bénard instability and turbulence. Phys. Rev. Lett. 33, 1185–1188 (1974)

    Google Scholar 

  98. P. R. Fenstermacher: “Laser Doppler Velocimetry Study of the Onset of Chaos in Taylor Vortex Flow”; Ph.D. Thesis, City College of the City University of New York (1979)

    Google Scholar 

  99. T. S. Durrani, C. A. Greated: Laser Systems in Flow Measurement (Plenum, New York 1977)

    Google Scholar 

  100. F. Durst, A. Melling, J. H.Whitelaw: Principles and Practice of Laser-Doppler Anemometry (Academic Press, London 1976)

    Google Scholar 

  101. M. A. Gorman, H. L. Swinney: Visual observation of a second characteristic mode in wavy vortex flow. Phys. Rev. Lett. 43, 1871–1875 (1979)

    Google Scholar 

  102. A. Roshko: Structure of turbulent shear flows: a new look. Am. Inst. Aero. Astron. J. 14, 1349–1357 (1976)

    Google Scholar 

  103. L. P. Reiss, T. J. Hanratty: Measurement of instantaneous rates of mass transfer to a small sink on a wall. Am. Inst. Chem. Eng. J. 8, 245–247 (1962)

    Google Scholar 

  104. Z. B. Krugljak, E. A. Kuznetsov, V. S. L'vov, Yu. E. Nesterikhin, A. A. Predtechensky, V. S. Sobolev, E. N. Utkin, F. A. Zhuravel: “Laminar-turbulent transition in circular Couette flow”, in Laminar-Turbulent Transition, ed. by R. Eppler and H. Fasel (Springer, Berlin, Heidelberg, New York 1980), pp. 378–387

    Google Scholar 

  105. E. A. Kuznetsov, V. S. L'vov, A. A. Predtechenskii, V. S. Sobolev, E. N. Utkin, JETP Lett. 30, 207–210 (1979)

    Google Scholar 

  106. E. N. Lorenz: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Google Scholar 

  107. J. Sherman, J. B. McLaughlin: Power spectra of nonlinearly coupled waves. Commun. Math. Phys. 58, 9–17 (1978)

    Google Scholar 

  108. H. L. Swinney, P. R. Fenstermacher, J. P. Gollub: “Transition to Turbulence in a Fluid Flow”, in Synergetics, a Workshop, ed. by H. Haken (Springer, Berlin, Heidelberg, New York 1977) pp. 60–69

    Google Scholar 

  109. H. Yahata: Temporal development of the Taylor vortices in a rotating fluid. Prog. Theor. Phys. Suppl. 64, 176–185 (1978)

    Google Scholar 

  110. H. Yahata: Temporal development of the Taylor vortices in a rotating fluid II. Prog. Theor. Phys. 61, 791–800 (1979)

    Google Scholar 

  111. D. Ruelle: Sensitive dependence on initial condition and turbulent behavior of dynamical systems. Ann. N.Y. Acad. Sci. 316, 408–416 (1979)

    Google Scholar 

  112. J. A. Cole: Taylor vortices with short rotating cylinders. J. Fluids Eng. 96, 69–70 (1974)

    Google Scholar 

  113. J. A. Cole: Taylor vortex behavior in annular clearances of limited length. Proc. of the Fifth Australasian Conf. on Hydraulics and Fluid Mechanics, pp. 514–521 (1974)

    Google Scholar 

  114. P. A. Jackson, B. Robati, F. R. Mobbs: “Secondary Flows Between Eccentric Rotating Cylinders at Subcritical Taylor Numbers“, in Superlaminar Flow in Bearings, Proc. of the Second Leeds-Lyon Symposium on Tribology (Institute of Mechanical Engineers, London 1975) pp. 9–14

    Google Scholar 

  115. J. T. Stuart: “Bifurcation Theory in Non-linear Hydrodynamic Stability”, in Applications of Bifurcation Theory, ed. by P. H. Rabinowitz (Academic Press, New York 1977) pp. 127–147

    Google Scholar 

  116. T. Alziary de Roquefort, G. Grillaud: Computation of Taylor vortex flow by a transient implicit method. Comput. Fluids 6, 259–269 (1978)

    Google Scholar 

  117. P. J. Blennerhasset, P. Hall: Centrifugal instabilities of circumferential flow in finite cylinders linear theory. Proc. R. Soc. London A365, 191–207 (1979)

    Google Scholar 

  118. P. Hall: Centrifugal instabilities of circumferential flows in finite cylinders: nonlinear theory. Proc. R. Soc. London A372, 317–356 (1980)

    Google Scholar 

  119. J. T. Stuart, R. C. Di Prima: On the mathematics of Taylor-vortex flows in cylinders of finite length. Proc. R. Soc. London A372, 357–365 (1980)

    Google Scholar 

  120. D. G. Schaeffer: Qualitative analysis of a model for boundary effects in the Taylor problem. Math. Proc. Camb. Philos. Soc. 87, 307–337 (1980)

    Google Scholar 

  121. P. Hall, I. C. Walton: The smooth transition to a convective regime in a two dimensional box. Proc. R. Soc. London A358, 199–221 (1977)

    Google Scholar 

  122. P. G. Daniels: The effect of distant side walls on the transition to smite amplitude Bénard convection. Proc. R. Soc. London A 358, 173–197 (1977)

    Google Scholar 

  123. P. Hall: Centrifugal instabilities in finite containers: a periodic model. J. Fluid Mech. 99, 575–596 (1980)

    Google Scholar 

Download references

Authors

Editor information

Harry L. Swinney PhD Jerry P. Gollub PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Di Prima, R.C., Swinney, H.L. (1981). Instabilities and transition in flow between concentric rotating cylinders. In: Swinney, H.L., Gollub, J.P. (eds) Hydrodynamic Instabilities and the Transition to Turbulence. Topics in Applied Physics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-13319-4_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-13319-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13319-3

  • Online ISBN: 978-3-540-38449-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics