Hydrodynamic stability and bifurcation

  • D. D. Joseph
Part of the Topics in Applied Physics book series (TAP, volume 45)


Reynolds Number Periodic Solution Bifurcation Diagram Couette Flow Double Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    D. D. Joseph: Stability of Fluid Motions I. Springer Tracts in Natural Philosophy, Vol. 27 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  2. 3.2
    D. D. Joseph: Stability of Fluid Motions II. Springer Tracts in Natural Philosophy, Vol. 28 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  3. 3.3
    O. Reynolds: An experimental investigation of the circumstances which determine whether the motion of water stall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. 174, 935 (1883)Google Scholar
  4. 3.4
    O. Reynolds: In Papers on Mechanical and Physical Subjects, Vol. II (Cambridge University Press, Cambridge 1901) p. 51Google Scholar
  5. 3.5
    O. Reynolds: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. A 186, 123 (1895)Google Scholar
  6. 3.6
    J. Serrin: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1 (1959)Google Scholar
  7. 3.7
    W. McF.Orr: The stability or instability of steady motions of a liquid. Part II. A viscous liquid. Proc. R. Irish. Acad. A 27, 69 (1907)Google Scholar
  8. 3.8
    T. Y. Thomas: Qualitative analysis of the flow of fluid in pipes. Am. J. Math. 64, 754 (1942)Google Scholar
  9. 3.9
    E. Hopf: Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann. 117, 764 (1941)Google Scholar
  10. 3.10
    D.Ruelle, F.Takens: On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971)Google Scholar
  11. 3.11
    L. D. Landau: On the problem of turbulence. C. R. Acad. Sci. USSR 44, 311 (1944)Google Scholar
  12. 3.12
    L. D. Landau, E. M. Lifshitz: Fluid Mechanics (Pergamon Press, Oxford 1959)Google Scholar
  13. 3.13
    E. Hopf: A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1, 303 (1948)Google Scholar
  14. 3.14
    E.Hopf: Repeated branching through loss of stability, an example. Proc. Conf. Diff. Eqs., Univ. of Maryland (1956) p. 49Google Scholar
  15. 3.15
    G. Prodi: Teoremi di tipo locale per il sistema di Navier-Stokes l'stabilita delle soluzioni stazionarie. Rend. Sem. Univ. Padova 32, 374 (1962)Google Scholar
  16. 3.16
    G. Iooss, D. D. Joseph: Bifurcation and stability of n T-periodic solutions branching from T-periodic solutions at points of resonance. Arch. Ration. Mech. Anal. 66, 135 (1977)Google Scholar
  17. 3.17
    G. Iooss: “Topics in Bifurcation of Maps and Applications”, University of Minnesota, Lecture Notes (1978)Google Scholar
  18. 3.18
    G. Iooss: Bifurcation of a periodic solution of the Navier-Stokes equations into an invariant torus. Arch. Ration. Mech. Anal. 58, 35 (1975)Google Scholar
  19. 3.19
    G. Iooss: Sur la deuxième bifurcation d'une solution stationnaire de systèmes du type Navier-Stokes. Arch. Ration. Mech. Anal. 64, 339 (1977)Google Scholar
  20. 3.20
    J.P. Gollub, S. V. Benson: Chaotic response to periodic perturbation of convecting fluid. Phys. Rev. Lett. 41, 948 (1978)Google Scholar
  21. 3.21
    J. Bass: Les Fonctions Pseudo-Aléatoires (Mémorial Des Sciences Mathématiques) (Gauthier-Villars, Paris 1962)Google Scholar
  22. 3.22
    J. B. McLaughlin, P. C. Martin: Transition to turbulence of a statically stressed fluid system. Phys. Rev. A 12, 186 (1975)Google Scholar
  23. 3.23
    E. N. Lorenz: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)Google Scholar
  24. 3.24
    N. H. Baker, D. W. Moore, E. A. Spiegel: Aperiodic behaviour of a non-linear oscillator. Quart. J. Mech. Appl. Math. XXIV, 391 (1971)Google Scholar
  25. 3.25
    I.J. Wygnanski, F.H. Champagne: On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281 (1973)Google Scholar
  26. 3.26
    I. J. Wygnanski, M. Sokolov, D. Friedman: On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283 (1975)Google Scholar
  27. 3.27
    D. Coles: Transition in circular Couette flow. J. Fluid Mech. 21, 385 (1965)Google Scholar
  28. 3.28
    H. Swinney, P. R. Fenstermacher, J. P. Gollub: “Transition to turbulence in a fluid flow”, in Synergetics, a Workshop, ed. by H. Haken (Springer, Berlin, Heidelberg, New York 1977) p. 60Google Scholar
  29. 3.29
    P. R. Fenstermacher, H. L. Swinney, J. P. Gollub: Transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103 (1979)Google Scholar
  30. 3.30
    G. Ahlers, R. P. Behringer: Evolution of turbulence from the Rayleigh-Bénard Instability. Phys. Rev. Lett. 40, 712 (1978)Google Scholar
  31. 3.31
    T. B. Benjamin: Applications of Leray-Schauder degree theory to problems of hydrodynamic stability. Math. Proc. Camb. Phil. Soc. 79, 373 (1976)Google Scholar
  32. 3.32
    O. Sawatzki, J. Zierep: Flow between a fixed outer sphere and a concentric rotating inner sphere (in German). Acta Mech. 9, 13 (1970)Google Scholar
  33. 3.33
    B. R. Munson, M. Menguturk: Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability and experiment. J. Fluid Mech. 69, 705 (1975)Google Scholar
  34. 3.34
    M. Wimmer: Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech. 78, 317 (1976)Google Scholar
  35. 3.35
    J. N. Belyaev, A. A. Monaxov, 1. M. Yavorskaya: Stability of a spherical Couette flow in thick layers with an interior rotating sphere. Mech. Fluid Gas No. 2 (1978)Google Scholar
  36. 3.36
    I. M. Yavorskaya, J. N. Belyaev, A. A. Monaxov: Research on stability and secondary flows within rotating spherical layers under arbitrary Rossby numbers. Rep. Acad. Sci. USSR 237, 801 (1977)Google Scholar
  37. 3.37
    B. R. Munson, D. D. Joseph: Viscous incompressible flow between concentric rotating spheres. Part 1. Basic flow. Part 2. Hydrodynamic stability. J. Fluid Mech. 49, 289 (1971)Google Scholar
  38. 3.38
    O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, 2nd ed. (Gordon and Breach, New York 1963)Google Scholar
  39. 3.39
    O. A. Ladyzhenskaya: Mathematical analysis of the Navier-Stokes equations for incompressible liquid. Annu. Rev. Fluid Mech. 7, 249 (1975)Google Scholar
  40. 3.40
    D. H. Sattinger: Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, Vol. 309 (Springer, Heidelberg, New York 1973)Google Scholar
  41. 3.41
    D. D. Joseph: Factorization theorems, stability and repeated bifurcation. Arch Ration. Mech. Anal. 66, 99 (1977)Google Scholar
  42. 3.42
    D. D. Joseph: Factorization theorems and repeated branching of solutions at a simple eigenvalue. Ann. N.Y. Acad. Sci. 316, 150 (1979)Google Scholar
  43. 3.43
    S. Rosenblat: Global aspects of Hopf bifurcation and stability. Arch. Ration. Mech. Anal. 66, 2 (1977)Google Scholar
  44. 3.44
    E.Hopf: “Abzweigung einer Periodischen Lösung eines Differentialsystems”, Berichte der Mathematisch-Physikalischen Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig XCIV (1942)Google Scholar
  45. 3.45
    D. D. Joseph: Stability of convection in containers of arbitrary shape. J. Fluid Mech. 47, 257 (1971)Google Scholar
  46. 3.46
    W. T. Koiter: On the Stability of Elastic Equilibrium, Delft, 1945 (in Dutch); translated into English as NASA TTF-10, 833 (1967)Google Scholar
  47. 3.47
    R. Thom: Topological methods in biology. Topology 8, 313 (1968)Google Scholar
  48. 3.48
    T. B. Benjamin: Bifurcation phenomena in steady flows of a viscous fluid. Part 1, Theory and Part 2, Experiments. Proc. R. Soc. London A 359, 1 (1978)Google Scholar
  49. 3.49
    B. J. Matkowsky, E. Reiss: Singular perturbation of bifurcations. Soc. Ind. Appl. Math. J. Appl. Math. 33, 230 (1977)Google Scholar
  50. 3.50
    M. Golubitsky, D. Schaeffer: A theory for imperfect bifurcation via singularity theory. Commun. Pure Appl. Math. 32, 21 (1979)Google Scholar
  51. 3.51
    G. Iooss, D.D.Joseph: Elementary Stability and Bifùrcation Theory (Springer, Berlin, Heidelberg, New York, 1980)Google Scholar
  52. 3.52
    G.Iooss, H.Nielsen, H.True: Bifurcation of the stationary Ekman flow in a stable periodic flow. Arch. Ration. Mech. Anal. 68, 227 (1978)Google Scholar
  53. 3.53
    D. H. Sattinger: Selection mechanisms for pattern formation. Arch. Ration. Mech. Anal. 66, 31 (1977)Google Scholar
  54. 3.54
    E.Lorenz: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)Google Scholar
  55. 3.55
    J. H. Curry: A generalized Lorenz system. Commun. Math. Phys. 60, 193 (1978)Google Scholar
  56. 3.56
    D. D. Joseph, T. S. Chen: Friction factors in the theory of bifurcating flow through annular ducts. J. Fluid Mech. 66, 189 (1974)Google Scholar
  57. 3.57
    T. Mott, D. D. Joseph: Stability of parallel flow between concentric cylinders. Phys. Fluids 11, 2065 (1968)Google Scholar
  58. 3.58
    J. T. Stuart: Nonlinear stability theory. Annu. Rev. Fluid Mech. 3, 347 (1971)Google Scholar
  59. 3.59
    S. A. Orszag, L. C. Kells: Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96, 159–207 (1980)Google Scholar
  60. 3.60
    C. C. Lin: The Theory of Hydrodynamic Stability (Cambridge University Press, Cambridge 1955)Google Scholar
  61. 3.61
    M. Nishioka, S. Iida, Y. Ichikawa: An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72, 731 (1975)Google Scholar
  62. 3.62
    D. Gottleib, S. A. Orszag: Numerical Analysis of Spectral Methods: Theory and Applications, NSF-CBMS Monograph 26, Soc. Ind, App. Math. Philadelphia (1978)Google Scholar
  63. 3.63
    J. Zahn, J. Toomre, E. Spiegel, D. Gough: Nonlinear cellular motions in Poiseuille channel flow. J. Fluid Mech. 64, 319 (1974)Google Scholar
  64. 3.64
    H. Reichardt: Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couette-Strömung. Z. Angew. Math. Mech. 36, S26 (1956)Google Scholar
  65. 3.65
    S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London 1961)Google Scholar
  66. 3.66
    J. L. Synge: “Hydrodynamic Stability”, in Semicentennial Publications of the American Mathematical Society, Vol. 2 (Amer. Math. Soc. 1938) p. 227Google Scholar
  67. 3.67
    J. T. Stuart: “Hydrodynamic Stability”, in Laminar Boundary Layers, ed. by L. Rosenhead (Oxford University Press, London 1963)Google Scholar
  68. 3.68
    S. F. Shen: Stability of Laminar Flows: Theory of Laminar Flows (High Speed Aerodynamics and Jet Propulsion, Vol. 4) Sect. G, ed. by F. K. Moore (Princeton University Press, 1964)Google Scholar
  69. 3.69
    A. S. Monin, A. M. Yaglom: Statistical Fluid Mechanics, Vol. 1. Mechanics of Tùrbulence (The MIT Press, Cambridge 1971)Google Scholar
  70. 3.70
    W. H. Reid: “The Stability of Parallel Flows”, in Basic Developments in Fluid Dynamics, Vol. 1, ed. by M. Holt (Academic Press, New York 1965) p. 249Google Scholar
  71. 3.71
    R. Betchov, W. O. Criminale: Stability of Parallel Flow (Academic Press, New York 1967)Google Scholar
  72. 3.72
    P. Drazin, L. N. Howard: Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 9, 1 (1966)Google Scholar
  73. 3.73
    H. P. Greenspan: The Theory of Rotating Fluids (Cambridge University Press, Cambridge 1969)Google Scholar
  74. 3.74
    C. S. Yih: Dynamics of Nonhomogeneous Fluids (Macmillan, New York 1965)Google Scholar
  75. 3.75
    S. Davis: The stability of time-periodic flow. Annu. Rev. Fluid Mech. 8, 57 (1976)Google Scholar
  76. 3.76
    L. Segel: “Nonlinear Hydrodynamic Stability Theory and Its Application to Thermal Convection and Curved Flow”, in Non-Equilibrium Thermodynamics: Variational Techniques and Stability, ed. by R. J. Donnelly, I. Prigogine, R. Herman (University of Chicago Press, Chicago 1966)Google Scholar
  77. 3.77
    M. Denn: Stability of Reaction and Transport Processes (Prentice-Hall, Englewood Cliffs, N.J. 1975)Google Scholar
  78. 3.78
    H. Swinney, J. Gollub: The transition to turbulence. Phys. Today 31, No. 8, 41 (August, 1978)Google Scholar
  79. 3.79
    I. Stakgold: Branching of solutions of nonlinear equations, Soc. Ind. Appl. Math. Rev. 13, 289 (1971)Google Scholar
  80. 3.80
    G. Iooss: Bifurcation et stabilité, Pub. Math. d'Orsay No. 31 (1974)Google Scholar
  81. 3.81
    J. Keller, S. Antman (eds.): Bifurcation Theory and Nonlinear Eigenvalue Problems (Benjamin, New York 1969)Google Scholar
  82. 3.82
    H. Haken (ed.): Synergetics, a Workshop (Springer, Berlin, Heidelberg, New York 1977)Google Scholar
  83. 3.83
    P. Rabinowitz (ed.): Applications of Bifurcation Theory (Academic Press, New York 1977)Google Scholar
  84. 3.84
    B. A. Finlayson: The Method of Weighted Residuals and Variational Principles (Academic Press, New York 1972)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • D. D. Joseph

There are no affiliations available

Personalised recommendations