Skip to main content

Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules

  • Conference paper
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 60/61))

Abstract

The field of mesophases is subdivided into six different phases: liquid crystals, plastic crystals, condis crystals and the corresponding LC, PC, and CD glasses. Liquid and plastic crystals are the traditional phases with positional and orientational disorder, respectively. Condis crystals are conformationally disordered. On hand of tables of thermodynamic transition parameters of small and large molecules it is shown that the orientational order in liquid crystals is only a few per cent of the total possible, while the positional order in plastic crystals is virtually complete. Condis crystals have a wide variety of different degrees of conformational disorder. The glass transitions of all mesophases are similar in type. Macromolecules in the liquid crystalline state produce high orientation on deformation. Plastic crystals consist always of small molecules. Condis crystals may under proper conditions anneal to extended chain crystals.

On leave from the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łodz, Poland

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Dalton, J.: “A New System of Chemical Philosophy”. Republication by Citadel Press (The Science Classic Library) of the 1808 first edition, New York, NY 1964, Chapter II, Section 4, Paragraph 2

    Google Scholar 

  2. Friedel, M. G.: “Les Etats Mésomorphes de la Matiére”, Ann. Phys. (Paris) 18, 273 (1922)

    Google Scholar 

  3. Wunderlich, B.: “Macromolecular Physics”, Vol. 3, “Crystal Melting”. Academic Press, New York, NY 1980

    Google Scholar 

  4. Staudinger, H.: “Organische Kolloidchemie”. 3rd ed., Vieweg Verlag, Braunschweig 1950

    Google Scholar 

  5. Reinitzer, F.: “Beiträge zur Kenntnis des Cholesterins”, Monatsh. 9, 421, 1888. The term liquid crystals was first used by O. Lehmann in “Fluessige Kristalle”. Engelmann, Leipzig, 1904. See also H. Kelker, History of liquid crystals. Mol. Cryst. Liq. Cryst. 21, 1 (1973). For a history of the discovery and recognition of plastic crystals see J. Timmermanns, Plastic crystals, a historical review. J. Phys. Chem. Solids 18, 1 (1961)

    Google Scholar 

  6. see for example White, J. L. and Fellers, J. F.: Macromolecular liquid crystals and their applications to high-modulus and tensile-strength fibers. J. Appl. Polymer. Sci., Appl. Polymer Symposium 33, 137 (1978)

    Google Scholar 

  7. see Smith, G. W.: Plastic Crystals, Liquid Crystals, and the Melting Phenomenon. The Importance of Order. Adv. in Liquid Crystals, Vol. 1, G. H. Brown ed., Academic Press, 1975, New York, NY, see this review also for extensive listings of prior References

    Google Scholar 

  8. see for example: Ubbelohde, A. R.: “Melting and Crystal Structure”. Oxford University Press (Clarendon), London and New York 1965; see also the recent update “The Molten State of Matter. Melting and Crystal Structure”. Wiley, New York 1978

    Google Scholar 

  9. For a detailed discussion with many examples, see Chapter 8.2 of Reference 3

    Google Scholar 

  10. Richards, J. W.: Relations between the melting-points and the latent heats of fusion of the metals. Chem. News 75, 278 (1897)

    Google Scholar 

  11. Walden, P.: Ueber die Schmelzwaerme, spezifische Kohaesion und Molekulargroesse bei der Schmelztemperatur. Z. Elektrochem. 14, 713 (1908)

    Google Scholar 

  12. Chapter 8.4.7 of reference 3

    Google Scholar 

  13. Wunderlich, B.: Study of the change in specific heat of monomeric and polymeric glasses during the transition. J. Phys. Chem. 64, 1052 (1960)

    Google Scholar 

  14. U. Gaur and B. Wunderlich, Additivity of the heat capacities of linear macromolecules in the molten state. Polymer Div. Am. Chem. Soc. Preprints 20, 429 (1979)

    Google Scholar 

  15. Some general reviews of liquid crystals are

    Google Scholar 

  16. Gray, G. W.: “Molecular Structure and the Properties of Liquid Crystals”. Academic Press, New York 1962

    Google Scholar 

  17. Gray, G. W. and Winsor, P. A.: eds. “Liquid Crystals and Plastic Crystals”. Wiley, Chichester 1974

    Google Scholar 

  18. de Gennes, P. G.: “The Physics of Liquid Crystals”. Clarendon Press, Oxford 1974

    Google Scholar 

  19. Johnson, J. F. and Porter, R. S.: eds. “Liquid Crystals and Ordered Fluids”. Vol. 1 and 2, Plenum Press, New York, NY, 1970, 1974

    Google Scholar 

  20. Porter, R. S. and Johnson, J. F.: eds. “Ordered Fluids and Liquid Crystals'. Am. Chem. Soc. Washington, DC 1967

    Google Scholar 

  21. Symposium of the Faraday Soc. #5, “Liquid Crystals”. Farad. Div. Chem. Soc. London 1972

    Google Scholar 

  22. Proc. Int. Conf. Liq. Cryst., Gordon and Breach, London since 1965

    Google Scholar 

  23. See also the journal Molecular Crystals Liquid Crystals, Gordon and Breach

    Google Scholar 

  24. Ciferri, A., Krigbaum, W., and Meyer, R. B.: eds. “Polymer Liquid Crystals”. (Materials Sci. and Tech. Ser.) Academic Press, New York, NY, 1983

    Google Scholar 

  25. Some general reviews of plastic crystals are

    Google Scholar 

  26. Sherwood, N.: ed. “The Plastically Crystalline State”. (Orientationally-disordered crystals). J. Wiley and Sons, Chichester 1979

    Google Scholar 

  27. Aston, J. G.: “Plastic Crystals” in D. Fox, M. M. Labes and A. Weissberger, eds. “Physics and Chemistry of the Organic Solid State”. Interscience Publ., New York NY 1963, Vol. 1, Chapt. 9

    Google Scholar 

  28. Staveley, L. A. K.: Phase transitions in plastic crystals. Annual Rev. of Phys. Chem.” 13, 351 (1962)

    Google Scholar 

  29. DuPre, D. B., Samulski, E. T. and Tobolsky, A. V.: The mesomorphic state: liquid crystals and plastic crystals, in Tobolsky, A. V. and Mark, H. F. eds. “Polymer Science and Materials”. Chapter 7, Wiley-Interscience, New York, NY 1971

    Google Scholar 

  30. Proc. of the Symposium on Plastic Crystals and Rotation in the Solid State. April, 1960, Phys. Chem. Solids 18 (1) (1961)

    Google Scholar 

  31. See also Refs. 7 and 15b

    Google Scholar 

  32. Ehrenfest, P.: Phase changes classified according to the singularities of the thermodynamic potential. Proc. Acad. Sci., Amsterdam 36, 153 (1933); Suppl. 75b, Mitt. Kammerlingh Onnes Inst., Leiden

    Google Scholar 

  33. Wunderlich, B.: “Macromolecular Physics”, Vol. 1, “Crystal Structure, Morphology, Defects”. Academic Press, New York, 1973

    Google Scholar 

  34. Wunderlich, B.: “Macromolecular Physics”, Vol. 2, “Crystal Nucleation, Growth Annealing”. Academic Press, New York 1976

    Google Scholar 

  35. Meesiri, W., Menczel, J., Gaur, U. and Wunderlich, B.: Phase transitions in mesophase macromolecules. III. The transitions in poly(ethylene terephthalate-co-oxybenzoate). J. Polymer. Sci., Polymer Phys. Ed., 20, 719 (1982)

    Google Scholar 

  36. Menczel, J. and Wunderlich, B.: Phase transitions in mesophase macromolecules. II. The transitions of poly(p-acryloyloxybenzoic acid). Polymer 22, 778 (1981)

    Google Scholar 

  37. Flory, P. J.: Phase equilibria in solutions of rod-like particles. Proc. Roy. Soc. London, Ser. A. 234, 73 (1956)

    Google Scholar 

  38. See Section 5.2.2 and refs. 104, 105 and 107

    Google Scholar 

  39. Wolpert, S. M., Weitz, A. and Wunderlich, B.: Time-dependend heat capacity in the glass transition region. J. Polymer. Sci., Part A-2, 9, 1887 (1971)

    Google Scholar 

  40. Wunderlich, B., Bodily, D. M. and Kaplan, M. H.: Theory and measurement of the glass-transformation interval of polystyrene. J. Appl. Phys. 35, 95 (1964)

    Google Scholar 

  41. Grebowicz, J. and Wunderlich, B.: The glass transition of p-alkyl-p′-alkoxy-azoxybenzene mesophases. Mol. Cryst. Liq. Cryst. 76, 287 (1981)

    Google Scholar 

  42. Grebowicz, J. and Wunderlich, B.: Phase transitions in mesophase macromolecules. IV. The transitions in poly(oxy-2,2′-dimethylazoxybenzene-4,4′-diyloxydodecanedioyl). J. Polymer Sci., Polymer Phys. Ed. 21, 141 (1983)

    Google Scholar 

  43. Menczel, J. and Wunderlich, B.: Heat capacity hysteresis of semicrystalline macromolecular glasses. J. Polymer Sci., Polymer Letters Ed. 19, 261 (1981)

    Google Scholar 

  44. Poisson, S. D.: “Recherches sur la probabilité des jugements en matière criminelle et en matière civile”, p. 206, Bachelier, Paris 1837

    Google Scholar 

  45. An equation of the type of eq. 7 for crystallization was first proposed by Kolmogoroff, A. N.: On the crystallization process in metals. Isvest. Akad. Nauk SSSR Ser. Math. 1, 335 (1937) and than independently derived by Avrami and others

    Google Scholar 

  46. Price, F. P. and Wendorff, J. H.: Transitions in mesophase forming systems. I. Transformation kinetics and pretransition effects in cholesteryl myristate. J. Phys. Chem. 75, 2839 (1971)

    Google Scholar 

  47. Jabarin, S. A. and Stein, R. S.: Light scattering and microscopic investigations of mesophase transitions of cholesteryl myristate. II. Kinetics of spherulite formation. J. Phys. Chem. 77, 409 (1973)

    Google Scholar 

  48. Price, F. P. and Wendorff, J. H.: Transitions in mesophase forming systems. III. Transformation kinetics and textural changes in cholesteryl nonanoate. J. Phys. Chem. 76, 276 (1972)

    Google Scholar 

  49. Price, F. P. and Wendorff, J. H.: Transitions in mesophase forming systems. II. Transformation kinetics and properties of cholesteryl acetate. J. Phys. Chem. 75, 2849 (1971)

    Google Scholar 

  50. Price, F. P. and Fritzsche, A. K.: Kinetics of spherulite growth in cholesteryl esters. J. Phys. Chem. 77, 396 (1973)

    Google Scholar 

  51. Adamski, P. and Klimczyk, S.: The crystallization rate constant and Avrami index for cholesterol pelargonate. Sov. Phys. Crystallogr. 23, 82 (1978)

    Google Scholar 

  52. Adamski, P. and Czyzewski, R.: Activation energy and growth rate of spherulites of cholesterol liquid crystals. Soc. Phys. Crystallogr. 23, 725 (1978)

    Google Scholar 

  53. Warner, S. B. and Jaffe, M.: Quiescent crystallization in thermotropic polyesters. J. Crystal Growth 48, 184 (1980)

    Google Scholar 

  54. For a discussion see Ref. 19, Chapter 6.3.3

    Google Scholar 

  55. Hellmuth, E. and Wunderlich, B.: Suerheating of linear high-polymer polyethylene crystals. J. Appl. Phys. 36, 3039 (1965)

    Google Scholar 

  56. Wunderlich, B.: Molecular nucleation and segregation. Disc. Farad. Soc. 68, 239 (1979)

    Google Scholar 

  57. Hellmuth, E., Wunderlich, B. and Rankin, J. M.: Superheating of linear high polymers. Polytetrafluoroethylene. Appl. Polymer Symposia, 2, 101 (1966)

    Google Scholar 

  58. Wunderlich, B. and Shu, H. C.: The crystallization and melting of selenium. J. Crystal Growth 48, 227 (1980); and H.-C. Shu and B. Wunderlich, Crystallization of Selenium from the vapor phase. Polymer 21, 521 (1980)

    Google Scholar 

  59. Landolt Boernstein “Zahlenwerte und Funktionen”. Sixth Edition, K. Schaefer and E. Lax, eds., Berlin, 1960. Vol. II, Part 2a, Kast, W.: “Umwandlungstemperaturen kristalliner Fluessigkeiten”, p. 266, Listing of 1500 small molecules. Vol. II, Part 6, Maier, W.: “Dielektrische Eigenschaften von kristallinen Fluessigkeiten”, p. 607. Vol. II, Part 8, Maier, W.: “Optische und Magnetooptische Eigenschaften von kristallinen Fluessigkeiten”, p. 553

    Google Scholar 

  60. First described by Chandrasekhar, S., Sadashiva, B. K. and Suresh, K. A. (Pramana 9, 471, 1977). For a recent review see Billard, J. in W. Helfrich and G. Heppke, eds. “Liquid Crystals of One-and Two-Dimensional Order”. Springer Verlag, Berlin 1980

    Google Scholar 

  61. Brooks, J. D. and Taylor, G. H.: The formation of graphitizing carbons from the liquid phase. Carbon 3, 185 (1965) (see also the “Extended Abstracts of the 12th Biennial Conference on Carbon”, Am. Carbon Soc., 1975).

    Google Scholar 

  62. See for example Benoit, H., Freund, L. and Spach, G.: in Fasman, G. ed. “Poly-alpha-amino acids”. Vol. 1, p. 105, Dekker, 1967; and Samulski, E. T.: Liquid crystalline order in poly-peptides, in A. Blumstein, ed., “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978

    Google Scholar 

  63. Luzzati, V.: The structure of DNA as determined by X-ray scattering techniques. Progr. Nucleic Acid Res. 1, 347 (1963). See also Ref. 52

    Google Scholar 

  64. See Ref. 15c p. 5

    Google Scholar 

  65. See for example

    Google Scholar 

  66. Gallot, B.: Liquid crystalline structure of block copolymers, p. 11 in A. Blumstein, ed., “Liquid Crystalline Order in Polymers”. Academic Press, New York 1978

    Google Scholar 

  67. J. Polymer Sci., Part C, Vol. 26 (1969)

    Google Scholar 

  68. Aggarwal, S., ed.: “Block Copolymers”. Plenum Press, New York, NY 1970

    Google Scholar 

  69. Allport, D. C. and James, W. H. eds.: “Block Copolymers”. Halstad Press, New York, NY 1973

    Google Scholar 

  70. See for example: Skoulios, A.: La structure des solutions aqueuses concentrées de savon. Adv. Colloid Interface Sci. 1, 79 (1967)

    Google Scholar 

  71. See for example: Bouligand, Y.: Liquid crystalline order in biological materials, p. 261 in Blumstein, A. ed.: “Liquid Crystalline Order in Polymers”. Academic Press, New York 1978. And Chapman, D.: “The Structure of Lipids”. Methuen, London, 1965

    Google Scholar 

  72. Gaur, U. and Wunderlich, B.: Study of microphase separation in block copolymers of styrene and alpha-methylstyrene in the glass transition region using quantitative thermal analysis. Macromolecules 13, 1618 (1980)

    Google Scholar 

  73. Charvolin, J. and Tardieu, A.: Lyotropic liquid crystals: Structures and Molecular Motions, in L. Liebert, ed. “Liquid Crystals”. Solid State Physics, Supplement 14, Academic Press, New York, NY 1978, p. 209

    Google Scholar 

  74. Sackmann, H. and Demus, D.: The problem of polymorphism in liquid crystals. Mol. Cryst. Liq. Cryst. 21, 239 (1973)

    Google Scholar 

  75. Tinh, N. H., Destrade, C. and Gasparoux, G.: Nematic disc-like liquid crystals. Phys. Lett. 72A, 251 (1979)

    Google Scholar 

  76. Destrade, C., Tinh, N. H., Gasparoux, G., Malthete, J. and Levelut, A. M.: Disc-like mesogens: A classification. Mol. Cryst. Liq. Cryst. 71, 111 (1981)

    Google Scholar 

  77. Petrie, S. E. B.: Smectic liquid crystals, in Saeva, F. D., ed. “Liquid Crystals, the Fourth State of Matter”. Marcel Dekker, New York, NY 1979

    Google Scholar 

  78. Barrall II, E. M. and Johnson, J. F.: Thermal properties of liquid crystals in ref. 15b, p. 254

    Google Scholar 

  79. Sorai, M. and Suga, H.: Studies on mesogenic disc-like molecules. II. Heat capacity of benzenehexa-n-heptanoate from 13 to 393 K. Mol. Cryst. Liq. Cryst. 73, 47 (1981)

    Google Scholar 

  80. Vorlaender, D.: Remarks on Liquocrystalline Resins and Laquers. Trans. Farad. Soc. 29, 207 (1933)

    Google Scholar 

  81. Sorai, M. and Seki, S.: Glassy liquid crystal of the the nematic phase of N-(o-Hydroxy-p-methoxybenzylidene)-p-butylaniline. Bull. Chem. Soc. Japan 44, 2887 (1971)

    Google Scholar 

  82. Tsuji, K., Sorai, M. and Seki, S.: New finding of glassy liquid crystal — a non-equilibrium state of cholesteryl hydrogen phthalate. Bull. Chem. Soc., Japan 44, 1452 (1971)

    Google Scholar 

  83. Sorai, M. and Seki, S.: Heat capacity of N-(o-hydroxy-p-methoxybenzylidene)-p-butylaniline: A glassy nematic liquid crystal. Mol. Cryst. Liq. Cryst. 23, 299 (1973)

    Google Scholar 

  84. Petrie, S. E. B.: The effect of excess thermodynamic properties versus structure formation on the physical properties of glassy polymers. J. Macromol. Sci., Phys. 12, 225 (1976)

    Google Scholar 

  85. Kessler, J. O. and Lydon, J. E.: Structure and thermal conductivity of supercooled MBBA. In Vol. 2. of of ref. 15d, p. 331

    Google Scholar 

  86. Cognard, J. and Gangguillet: Glassy transition in liquid crystal eutectic mixtures. Mol. Cryst. Liq. Cryst. Lett. 49, 33 (1978)

    Google Scholar 

  87. Chistyakov, I. G., Schabischev, L. S., Jarenov, R. I. and Gusakova, L. A.: The polymorphism of the smectic liquid crystal. Mol. Cryst. Liq. Cryst. 7, 279 (1969)

    Google Scholar 

  88. Deniz, K. U., Paranjpe, A. S., Mirza, E. B., Parvathanathan, P. S. and Patel, K. S.: DSC and X-ray diffraction investigations of phase transitions in HxBABA and NBABA. J. de Physique, C3, 40, 136 (1979)

    Google Scholar 

  89. Blumstein, A. and Hsu, E. C.: Liquid crystalline order in polymers with mesogenic side groups; in Blumstein, A. ed.: “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978, p. 105

    Google Scholar 

  90. See particularly the extensive work of Strzelecki, L. and Liebert, L.: published in the Bull. Soc. Fr. (1973) p. 597, 603, 605; (1975) p. 2073, 2750. See also Bouligand, Y., Cladis, P. E., Liebert, L. and Strzelecki, L.: Study of sections of polymerized liquid crystals. Mol. Cryst. Liq. Cryst. 25, 233 (1974)

    Google Scholar 

  91. Ref. 3, Chapter 10.3.4

    Google Scholar 

  92. Plate, N. A. and Shibaev, V. P.: Comb-like polymers. Structure and properties. J. Polymer Sci., Macromol. Rev. 8, 117 (1974)

    Google Scholar 

  93. Shibaev, V. P., Freidzon, Ya. S. and Plate, N. A.: Cholesterol-containing Liquid-crystalline polyers; Dokl. Akad. Nauk USSR 227, 1412 (1976)

    Google Scholar 

  94. Shibaev, V. P. and Plate, N. A.: Liquid crystalline polymers, Vysokomol. Soedin. A1 9, 923 (1977), [Engl. translat. Polymer. Sci. USSR 19, 1065 (1977)]

    Google Scholar 

  95. Finkelmann, H., Ringsdorf, H. and Wendorff, J. H.: Model considerations and examples of enantiotropic liquid crystalline polymers. Makromol. Chem. 179, 273 (1978)

    Google Scholar 

  96. Maganini, P. L.: Structure and properties of polymers with strongly anisometric side groups. Makromol. Chem. Suppl. 4, 223 (1981)

    Google Scholar 

  97. Frosini, V.: Mechanical relaxation in polymer mesophases. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 806, 1982

    Google Scholar 

  98. Shibaev, V. P., Plate, N. A. and Freidzon, Y. S.: Thermotropic cholesterol-containing liquid crystalline polymers, in A. Blumstein, ed. “Mesomorphic Order in Polymers”. ACS Symposium Series 74, Am. Chem. Soc. Washington, D.C. 1978. See also J. Poly. Sci., Polymer Chem. Ed. 17, 1655 (1979)

    Google Scholar 

  99. Lupinacci, D., Frosini, V. and Magagnini, P. L.: Mesomorphic structure of a homopolymer of N-(4-biphenyl)acrylamide and of copolymers with 4-biphenylacrylate. Makromol. Chem. Rapid Commun. 1, 671 (1980)

    Google Scholar 

  100. Finkelmann, H., Happ, M., Portugal, M. and Ringsdorf, H.: Liquid crystalline polymers with biphenyl-moieties as mesogenic group. Makromol. Chem. 179, 2541 (1978)

    Google Scholar 

  101. Frenzel, J. and Rehage, G.: PVT-measurements on liquid crystalline polymers. Makromol. Chem., Rapid Commun. 1, 129 (1980)

    Google Scholar 

  102. Finkelmann, F., Ringsdorf, H., Siol, W. and Wendorff, H.: Synthesis of cholesteric liquid crystalline polymers. Makromol. Chem. 179, 829 (1978)

    Google Scholar 

  103. Shibaev, V. P., Moiseenko, V. M., Plate, N. A.: Thermotropic liquid crystalline polymers, 3, Comb-like polymers with side chains simulating the smectic type of liquid crystals. Makromol. Chem. 181, 1381 (1980)

    Google Scholar 

  104. Finkelmann, H. and Rehage, G.: Investigations on liquid crystalline polysiloxanes, 1, Synthesis and characterization of linear polymers. Makromol. Chem. Rapid Commun. 1, 31 (1980)

    Google Scholar 

  105. Wendorff, J. H.: Scattering in liquid crystalline polymer systems, in A. Blumstein, ed. “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978, p. 1

    Google Scholar 

  106. Hardy, Gy., Cser, F., Nyitrai, K., Samay, G. and Kallo, A.: Investigation of the mesomorphic structure of p-alkoxy-phenyl-p-acryloyloxybenzoate polymers. J. Cryst. Growth, 48, 191 (1980)

    Google Scholar 

  107. Shibaev, V. P., Tal'rose, R. V., Karakhanova, F. I. and Plate, N. A.: Thermotropic liquid crystals. II. Polymers with aminoacid fragments in the side chains. J. Polymer. Sci. Polymer Chem. Ed. 17, 1671 (1979)

    Google Scholar 

  108. Finkelmann, H., Lehmann, B. and Rehage, G.: Phase behaviour of lyotropic liquid crystalline side chain polymers in aqueous solutions. Colloid Polymer Sci. 260, 56 (1982)

    Google Scholar 

  109. Asrar, J., Thomas, O., Zhou, Q. and Blumstein, A.: Thermotropic liquid crystalline polyesters: Structure property relationship. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 797, 1982

    Google Scholar 

  110. Jannelli, P., Roviello, A. and Sirigu, A.: Mesophasic properties of linear copolymers. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 803, 1982. See also J. Polymer Sci., Polymer Lett. Ed. 13, 455 (1975), Makromol. Chem. 181, 1799 (1980) and Europ. Polymer J. 15, 61, (1979)

    Google Scholar 

  111. Jo, B. W. and Lenz, R. W.: Liquid crystalline polymers, 7, thermotropic polyesters with main chain phenyl-1,4-phenylene, 4,4′-biphenylene, and 1,1′-binaphthyl-4,4′-ylene units. Makromol. Chem. Rapid Commun. 3, 23 (1982)

    Google Scholar 

  112. Griffin, A. C. and Havens, S. J.: Mesogenic polymers. III. Thermal properties and synthesis of three homologous series of thermotropic liquid crystalline “backbone” polyesters. J. Polymer Sci., Polymer Phys. Ed. 19, 951 (1981)

    Google Scholar 

  113. Iimura, K., Koide, N., Ohta, R. and Takeda, M.: Synthesis of thermotropic liquid crystalline polymers, 1, azoxy and azo-type polyesters. Makromol. Chemie 182, 2563 (1981)

    Google Scholar 

  114. Iimura, K., Koide, N., Tanabe, H. and Takeda, M.: Synthesis of thermotropic liquid crystalline polymers, 2, polyurethanes. Makromol. Chemie 182, 2569 (1981)

    Google Scholar 

  115. Roviella, A. and Sirgu, A.: Odd-even effects in polymeric liquid crystals. Makromol. Chem. 183, 895 (1982)

    Google Scholar 

  116. Takeda, M.: Recent developments in the area of thermotropic liquid crystalline polymers and their thermal analysis, in B. Miller, ed. “Thermal Analysis”, Vol. II, Proceedings of the 7th ICTA, Wiley and Sons 1982, p. 927

    Google Scholar 

  117. Blumstein, R. B. and Stickles, E.: Influence of molecular weight on some properties of polymeric liquid crystals. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 799, 1982

    Google Scholar 

  118. Preston, J.: Synthesis and properties of rodlike condensation polymers. A. Blumstein, ed. “Liquid Crystalline Order in Polymers”. Academic Press, New York 1978, pg. 141

    Google Scholar 

  119. Winsor, P. A.: Non-amphiphilic cubic mesophases “plastic crystals”. Chapter 2.2 in Ref. 15b

    Google Scholar 

  120. Dunning, W. J.: The crystal structure of some plastic and related crystals in Ref. 16a, pg. 1

    Google Scholar 

  121. Westrum, Jr., E. F. and McCullough, J. P.: Thermodynamics of crystals, in Fox, D., Labes, M. M. and Weissberger, A.: “Physics and Chemistry of the Organic Solid State”. Interscience Publ., New York, NY 1963, p. 1–178

    Google Scholar 

  122. Boden, N.: NMR studies of plastic crystals. Chapter 5 in Ref. 16a

    Google Scholar 

  123. Adachi, K., Suga, H. and Seki, S.: Calorimetric study of the glassy state. VI. Phase changes in crystalline and glassy-crystalline 2,3-dimethylbutane. Bull. Chem. Soc. Japan 44, 78 (1971)

    Google Scholar 

  124. Adachi, K., Suga, H. and Seki, S.: Phase changes in crystalline and glassy-crystalline cyclohexanol. Bull. Chem. Soc. Japan 41, 1073 (1968)

    Google Scholar 

  125. Huffman, H. M., Todd, S. S. and Oliver, G. D.: Low temperature data on eight alkylcyclohexanes. J. Am. Chem. Soc. 71, 584 (1949)

    Google Scholar 

  126. Adachi, K., Suga, H. and Seki, S.: The glassy crystalline state — a non-equilibrium state of plastic crystals. Bull. Chem. Soc. Japan 43, 1916 (1970)

    Google Scholar 

  127. Schneider, N. S., Desper, C. R. and Beres, J. J.: Mesomorphic structure in polyphosphazenes in A. Blumstein, ed. “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978

    Google Scholar 

  128. Pechhold, W. and Blasenbrey, S.: Phase transitions, relaxations, and properties of high polymers. Angew. Makromol. Chem. 22, 3 (1972); see also Rheol. Acta 6, 174 (1967); Kolloid Z. Z. Polymere 216/217, 235 (1967); Ber. Bunsenges. 74, 784 (1970); and Kolloid Z. Z. Polymers 241, 955 (1970)

    Google Scholar 

  129. Baur, H.: Bemerkungen zur Defekttheorie von n-Paraffinen und Polymeren. Colloid and Polymer Sci. 252, 641 (1974), and: Zur Theorie der Umwandlungserscheinungen in n-Alkyl-Lamellen. Habilitationsschrift DB 1992+a, Technical University Hannover 1977

    Google Scholar 

  130. Statton, W. O.: Directional crystallization of polymers. Ann. N.Y. Acad. Sci. 83, 27 (1959)

    Google Scholar 

  131. Tadokoro, H.: “Structure of Crystalline Polymers”. Wiley-Interscience, New York, NY 1979

    Google Scholar 

  132. Wunderlich, B. and Arakawa, T.: Polyethylene crystallized from the melt under elevated pressure, J. Polymer Sci., Part A, 2, 3697 (1964)

    Google Scholar 

  133. Geil, P. H., Anderson, F. R., Wunderlich, B. and Arakawa, T.: Morphology of polyethylene crystallized from the melt under pressure. J. Polymer Sci., Part A, 2, 3703 (1964)

    Google Scholar 

  134. Arakawa, T. and Wunderlich, B.: Thermodynamic properties of extended chain polymethylene single crystals. J. Polymer Sci., Part C, 16, 653 (1967)

    Google Scholar 

  135. Wunderlich, B. and Melillo, L.: Morphology and growth of extended chain crystals of polyethylene. Makromol. Chemie 118, 250 (1968)

    Google Scholar 

  136. Bassett, D. C. and Turner, B.: Chain extended crystallization of polyethylene: Evidence of a new high-pressure phase. Nature (London) Phys. Sci. 240, 146 (1972); Bassett, D. C., Block, S. and Piermarini, G. J.: A high-pressure phase of polyethylene and chain-extended growth, J. Appl. Phys. 45, 4146 (1974); Yasuniwa, M., Nakafuku, C. and Takemura, T.: Melting and crystallization process of polyethylene under high pressure, Polymer J. 4, 526 (1973)

    Google Scholar 

  137. For general reviews of the topic of extended chain crystals see: ref. 3, Chapter 8.5.2; ref. 18, Chapter 3.3.1; ref. 19, Chapter 6.3.3

    Google Scholar 

  138. Bassett, D. C., Chain-extended polyethylene in context: a review. Polymer 17, 460 (1976)

    Google Scholar 

  139. Matsushige, K. and Takemura, T.: Crystallization of macromolecules under high pressure. J. Crystal Growth 48, 343 (1980)

    Google Scholar 

  140. Maeda, Y., Kanetsuna, H., Nagata, K., Matsushige, K. and Takemura, T.: Direct observation of phase transitions of polyethylene under high pressure by a PSPC X-ray system. J. Polymer Sci., Polymer Phys. Ed. 19, 1313 (1981)

    Google Scholar 

  141. Hikosaka, M., Minomura, S., Seto, T.: Melting and solid-solid transition of polyethylene under pressure. Japan. J. Applied Phys. 19, 1763, 1980

    Google Scholar 

  142. Yamamoto, T., Miyagi, H. and Asai, K.: Structure and properties of high pressure phase of polyethylene. Japan. J. Appl. Phys. 16, 1891 (1977)

    Google Scholar 

  143. Yasuniva, M., Enoshita, R. and Takemura, T.: X-ray studies of polyethylene under high pressure. Japan. J. Appl. Phys. 15, 1421 (1976)

    Google Scholar 

  144. Ide, T., Taki, S. and Takemura, T.: The high pressure and high temperature dilatometer. Japan. J. Appl. Phys. 16, 647 (1977)

    Google Scholar 

  145. Yasuniwa, M. and Takemura, T.: Microscopic observation of the crystallization process of polyethylene under high pressure. Polymer 15, 661 (1974)

    Google Scholar 

  146. Yamamoto, T.: Nature of disorder in the high pressure phase of polyethylene. J. Macromol. Sci.-Phys. B16, 487 (1979)

    Google Scholar 

  147. Tanaka, H. and Takemura, T.: Studies on the high-pressure phases of polyethylene and polytetrafluoroethylene by Raman spectroscopy. Polymer J. 12, 355 (1980)

    Google Scholar 

  148. Nagata, K., Tagashiva, K., Taki, S. and Takemura, T.: Ultrasonic study of high pressure phase in polyethylene. Japan. J. Appl. Physics 19, 985 (1981)

    Google Scholar 

  149. Starkweather, H. W.: A comparison of the rheological properties of polytetrafluoroethylene below its melting point with certain low-molecular weight smectic states. J. Polymer Sci., Polymer Phys. Ed. 17, 73 (1979)

    Google Scholar 

  150. Melillo, L. and Wunderlich, B.: Extended chain crystals VIII. Morphology of polytetrafluoroethylene. Kolloid Z. Z. Polymere 250, 417 (1972)

    Google Scholar 

  151. Bassett, D. and Davitt, R.: On the crystallization phenomena in polytetrafluorethylene. Polymer 15, 721 (1974)

    Google Scholar 

  152. Bates, T. W. and Stockmayer, W. H.: Conformational energies of perfluoroalkanes. III. Properties of polytetrafluoroethylene. Macromolecules 1, 17 (1968)

    Google Scholar 

  153. Natarajan, R. T. and Davidson, T.: Kinetics of the 20 °C phase transformation in polytetrafluoroethylene. J. Polymer Sci., Polymer Phys. Ed. 10, 2209 (1972)

    Google Scholar 

  154. Starkweather, Jr., H. W., Zoller, P., Jones, G. A. and Vega, A. J.: Heat of fusion of polytetrafluoroethylene. Proc. of the 11th NATAS Conference, New Orleans, LA (1981) pg. 361; see also J. Polymer Sci. Polymer Phys. Ed. 20, 751 (1982)

    Google Scholar 

  155. Marx, P. and Dole, M.: Specific heat of synthetic high polymers. V. A. study of the order-disorder transition in polytetrafluoroethylene. J. Am. Chem. Soc. 17, 4771 (1955)

    Google Scholar 

  156. Clark, E. S. and Muus, L. T.: Partial disordering and crystal transitions in polytetrafluoroethylene. Z. Krist. 117, 119 (1962); see also E. S. Clark, J. Makromol. Sci. Phys., B1, 795 (1967)

    Google Scholar 

  157. Mele, A., Site, A. D., Bettiniali, C. and DiDominico, A.: Thermoluminescence and phase transitions of irradiated fluorinated polymers. J. Chem. Phys. 49, 3297 (1968)

    Google Scholar 

  158. Gohil, R. M. and Petermann, J.: Chain conformational defects in polyvinylidene fluoride. Polymer 22, 1612 (1981); Takahashi, Y. and Tadokoro, H.: Formation mechanism of kink bands in modification II of poly(vinylidene fluoride). Evidence for flip-flop motion between TGT\(\bar G\)and T\(\bar G\)TG conformations. Macromolecules 13, 1316 (1980); Takahashi, Y., Tadokoro, H. and Odajima, A.: Kink bands in form I of poly(vinylidene fluoride). Macromolecules 13, 1318 (1980)

    Google Scholar 

  159. See for example Lovinger, A. J.: Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules 15, 40 (1982)

    Google Scholar 

  160. Hasegawa, R., Kobayashi, M. and Tadokoro, H.: Molecular conformation and packing of poly(vinylidene fluoride). Stability of three crystalline forms and the effect of high pressure, Polymer J. 3, 591 (1972); Hasegawa, R., Takahashi, Y., Chatani, Y. and Tadokoro, H.: Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polymer J. 3, 600 (1972)

    Google Scholar 

  161. Miyamoto, Y., Nakafuku, C. and Takemura, T.: Crystallization of polychlorotrifluoroethylene. Polymer J. 3, 120 (1972)

    Google Scholar 

  162. Natta, G., Peraldo, M. and Corradini, P.: Modificazione mesomorfa smettica del polipropilene isotattico. Rend. Accad. Naz. Lincei, Vol. 24, 14 (1959)

    Google Scholar 

  163. Zannetti, R., Celotti, G. C., Fichera, A. and Francesconi, R.: The structural effects of annealing time and temperature on the paracrystal-crystal transition in isotactic polypropylene. Makromol. Chemie 128, 137 (1969)

    Google Scholar 

  164. Miller, R. L.: On the existence of near-range order in isotactic polypropylenes. Polymer 1, 135 (1960)

    Google Scholar 

  165. Corradini, P.: The stereochemistry of Macromolecules. Dekker, New York, NY Vol. 3, 1968

    Google Scholar 

  166. Fichera, A. and Zannetti, R.: Thermal properties of isotactic polypropylene quenched from the melt and annealed. Makromol. Chemie 176, 1885 (1975)

    Google Scholar 

  167. Nakafuku, C.: High pressure d.t.a. study on the melting and crystallization of isotactic polypropylene. Polymer 22, 1673 (1981)

    Google Scholar 

  168. Natta, G. and Corradini, P.: Conformation of linear chains and their mode of packing in the crystal state. J. Polymer Sci. 39, 29 (1959); see also Natta, G., Corradini, P. and Porri, D.: Rend. Accad. Nazl. Lincei 20, 728 (1956)

    Google Scholar 

  169. Iwayanagi, S. and Miura, J.: Nuclear magnetic resonance study of solid phase transition of trans-1,4-polybutadiene, Rept. Progr. Polymer Phys. Japan 8, 303 (1965)

    Google Scholar 

  170. Moraglio, G., Polizzotti, G. and Danusso, F.: Enantiotropic polymorphism of transtactic poly-1,3-butadiene, Europ. Polymer J. 1, 183 (1965)

    Google Scholar 

  171. Corradini, P.: On the chain conformation of the high temperature polymorph of trans-1,4-polybutadiene. Polymer Letters 7, 211 (1969); see also J. Polymer Sci., Symposia 50, 327 (1975)

    Google Scholar 

  172. Suehiro, K. and Takayanagi, N.: Structural studies of the high temperature form of trans-1,4-polybutadien crystal. J. Macromol. Sci. Phys. B4, 39 (1970)

    Google Scholar 

  173. Bautz, G., Leute, U., Dollhopf, W. and Haegele, P. C.: On the solid state phases of poly(trans-1,4-butadiene). Colloid and Polymer Sci. 259, 714 (1981)

    Google Scholar 

  174. Finter, J. and Wegner, G.: The relation between phase transition and crystallization behavior of 1,4-trans-poly(butadiene). Makromol. Chemie 182, 1859 (1981) (see here and Ref. 3 for older data)

    Google Scholar 

  175. Natta, G. and Corradini, P.: The crystal structure of cis-1,4-polybutadiene. Nuovo Cimento Suppl. 15, 111 (1960); see also Angew. Chemie 68, 615 (1956) and Nyburg, S. C.: Acta Cryst. 7, 385 (1954)

    Google Scholar 

  176. Edwards, B. C. and Phillips, P. J.: The structure of the high pressure phase of cis-polyisoprene. J. Mat. Sci. 10, 1233 (1975); see also J. Polymer Sci. B10, 321 (1972) and Polymer 15, 491 (1974)

    Google Scholar 

  177. Phillips, P. J. and Edwards, B. C.: High pressure phases in polymers. III. The nature of the high-pressure phase in cis-polyisoprene. J. Polymer Sci., Polymer Phys. Ed. 14, 377 (1976); see also ibid. 13, 1819, 2117 (1975) and 14, 391 (1976)

    Google Scholar 

  178. Rossem, A. van and Lotichius, J.: Das Einfrieren des Rohkautschuks. Kautschuk 5, 2 (1929); N. Bekkedahl, Forms of rubber as indicated by temperature-volume relationship, J. Res. Natl. Bur. Stand. 13, 411 (1934)

    Google Scholar 

  179. Lieser, G.: Polymer single crystals of poly(4-hydroxybenzoate). J. Polymer Sci., Polymer Phys. Ed., 21, 1611 (1983)

    Google Scholar 

  180. Gogolewski, S. and Pennings, A. J.: Crystallization of polyamides under elevated pressure. Nylon 6. Polymer 14, 463 (1973); see also 18, 647, 654 (1977)

    Google Scholar 

  181. Hiramatsu, N. and Hirakawa, S.: Melting and transformation behavior of gamma form Nylon 6 under high pressure. Polymer J. 14, 165 (1982)

    Google Scholar 

  182. Gogolewski, S.: A possible mechanism of chain extension in nylon-6 during crystallization under pressure. Polymer 18, 63 (1977)

    Google Scholar 

  183. Gogolewski, S. and Pennings, A. J.: Crystallization of polyamides under elevated pressure: 5 Pressure-induced crystallization from the melt and annealing of folded chain crystals of nylon-11, poly(aminoundecaneamide) under pressure, Polymer 18, 660 (1977); Stamhuis, J. E. and Pennings, A. J.: Crystallization of polyamides under elevated pressure: 6. Pressure-induced crystallization from the melt and annealing of folded chain crystals of nylon-12, polylaurolactam under pressure. Polymer 18, 667 (1977)

    Google Scholar 

  184. Hiramatsu, N., Hashida, S. and Hirakawa, S.: Formation of alpha form nylon 12 under high pressure. Japan. J. Appl. Phys. 21, 651 (1982)

    Google Scholar 

  185. Kast, W.: Die Molekel-Struktur der Verbindungen mit kristallin-fluessigen (mesomorphen) Schmelzen. Angew. Chemie 67, 592 (1955)

    Google Scholar 

  186. Siegmann, A. and Harget, P. J.: Melting and crystallization of poly(ethylene terephthalate) under pressure. J. Polymer Sci., Polymer Phys. Ed. 18, 2181 (1980)

    Google Scholar 

  187. Beatty, C. L., Pochnan, J. M., Froix, M. F. and Hinman, D. D.: Liquid crystalline type order in polydiethylsiloxane. Macromolecules 8, 547 (1975)

    Google Scholar 

  188. Pochan, J. M., Hinman, D. F. and Froix, M. F.: Morphological studies on the viscous crystalline phase of poly(diethylsiloxane) including the dynamics of phase formation and the relationship of viscous crystalline structure and crystalline structure. Macromolecules 9, 611 (1976)

    Google Scholar 

  189. Beatty, C. L. and Karasz, F. E.: Transitions in poly(diethyl siloxane). J. Polymer Sci., Polymer Phys. Ed. 13, 971 (1975); see also Pochnan, J. M., Beatty, C. L., Hinman, D. D. and Karasz, F. E.: ibid. 977

    Google Scholar 

  190. Froix, M. F., Beatty, C. L., Pochnan, J. M. and Hinman, D. D.: Nuclear spin relaxation in poly(diethylsiloxane). J. Polymer Sci., Polymer Phys. Ed. 13, 1269 (1975)

    Google Scholar 

  191. Singler, R. E., Schneider, N. S., Hagnamer, G. L.: Polyphosphazenes: Synthesis-properties-applications. Polymer Eng. Sci. 15, 321 (1975)

    Google Scholar 

  192. Schneider, N. S., Desper, C. R., Singler, R. E.: The Thermal transition behavior of polyorganophosphazenes. J. Appl. Polymer Sci. 20, 3087 (1976)

    Google Scholar 

  193. Grossmann, H.-P.: Investigation of conformational transitions in cycloalkanes. Polymer Bulletin 5, 137 (1981)

    Google Scholar 

  194. Mueller, A.: An X-ray investigation of normal paraffins near their melting points. Proc. Roy. Soc. A. 138, 514 (1932)

    Google Scholar 

  195. For a summary see Ewen, B., Strobl, G. R. and Richter, D.: Phase transitions in crystals of chain molecules. Disc. Farad. Soc. 69, 19 (1980)

    Google Scholar 

  196. Strobl, G. R.: Molecular motion, thermal expansion, and phase transitions in paraffins: A model for polymers. J. Polymer Sci. Polymer Symposium 59, 121 (1977); see also Colloid Polymer Sci. 254, 170 (1976)

    Google Scholar 

  197. Takamizawa, K., Ogawa, Y. and Oyama, T.: Thermal behavior of n-alkanes synthesized with attention paid to high purity. Polymer J. 14, 441 (1982)

    Google Scholar 

  198. Strobl, G., Ewen, B., Fischer, E. W. and Piesczek, W.: Defect structure and molecular motion in the four modifications of n-tritriacontane. J. Chem. Phys. 61, 5257, 5265 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

N. A. Platé

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Wunderlich, B., Grebowicz, J. (1984). Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. In: Platé, N.A. (eds) Liquid Crystal Polymers II/III. Advances in Polymer Science, vol 60/61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12994-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-12994-4_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12994-3

  • Online ISBN: 978-3-540-38816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics