Skip to main content

Initial value problems for viscoelastic liquids

  • Conference paper
  • First Online:
Trends and Applications of Pure Mathematics to Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 195))

Abstract

Cauchy problems for equations modelling non-Newtonian fluids are discussed and recent existence theorems for classical solutions, based on semigroup methods, are presented. Such existence results depend in a crucial manner on the symbol of the leading differential operator. Both “parabolic” and “hyperbolic” cases are discussed. In general, however, the leading differential operator may be of non-integral order, arising from convolution with a singular kernel. This has interesting implications concerning the propagation of singularities. In particular, there are cases where C-smoothing coexists with finite wave speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623–727 and 17 (1964), 35–92.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Bernstein, E. A. Kearsley and L. J. Zapas, A study of stress relaxation with finite strain. Trans. Soc. Rheology 7 (1963), 391–410.

    Article  ADS  MATH  Google Scholar 

  3. L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Ann. Phys. 7 (1876), Ergänzungsband, 624–654.

    Google Scholar 

  4. B. D. Coleman and M. E. Gurtin, Waves in materials with memory II, Arch. Rat. Mech. Anal. 19 (1965), 239–265.

    Article  MATH  Google Scholar 

  5. C. M. Dafermos and J. A. Nohel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. PDE 4 (1979), 219–278.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. M. Dafermos and J. A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, Amer. J. Math., Supplement (1981), 87–116.

    Google Scholar 

  7. M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems, J. Chem. Soc. Faraday 74 (1978), 1789–1832 and 75 (1979), 38–54.

    Article  Google Scholar 

  8. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z. 178 (1981), 297–329.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. E. Green and R. S. Rivlin, Nonlinear materials with memory, Arch. Rat. Mech. Anal. 1 (1957), 1–21.

    Article  MATH  Google Scholar 

  10. W. J. Hrusa, A nonlinear functional differential equation in Banach space with applications to materials with fading memory, Arch. Rat. Mech. Anal.

    Google Scholar 

  11. T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rat. Mech. Anal. 63 (1976), 273–294.

    MATH  Google Scholar 

  12. T. Kato, Linear equations of “hyperbolic” type I, J. Fac. Sci. Univ. Tokyo 17 (1970), 241–258 and II, J. Math. Soc. Japan 25 (1973), 648–666.

    MATH  MathSciNet  Google Scholar 

  13. T. Kato, Quasi-linear equations of evolution with application to partial differential equations, in: W. N. Everitt (ed.), Spectral Theory of Differential Equations, Springer Lecture Notes in Mathematics 448, 1975, 25–70.

    Google Scholar 

  14. A. Kaye, Cc A Note 134, The College of Aeronautics, Cranfield, Bletchley, England 1962.

    Google Scholar 

  15. J. U. Kim, Global smooth solutions of the equations of motion of a nonlinear fluid with fading memory, Arch. Rat. Mech. Anal. 79 (1982), 97–130.

    Article  MATH  MathSciNet  Google Scholar 

  16. A Narain and D. D. Joseph, Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid, Rheol. Acta 21 (1982), 228–250.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Noll, A mathematical theory of the mechanical behavior of continuous media, Arch. Rat. Mech. Anal. 2 (1958), 197–226.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. London A 200 (1950), 523–541.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. Renardy, A quasilinear parabolic equation describing the elongation of thin filaments of polymeric liquids, SIAM J. Math. Anal. 13 (1982), 226–238.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity, J. Diff. Eq. 48 (1983), 280–292.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. M. Renardy, Local existence theorems for the first and second initial-boundary value problems for a weakly non-Newtonian fluid, Arch. Rat. Mech. Anal. 83 (1983), 229–244.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Renardy, Singularly perturbed hyperbolic evolution problems with infinite delay and an application to polymer rheology, SIAM J. Math. Anal. 15 (1984).

    Google Scholar 

  23. M. Renardy, A local existence and uniqueness theorem for a K-BKZ fluid, submitted to Arch. Rat. Mech. Anal.

    Google Scholar 

  24. M. Renardy, Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta 21 (1982), 251–254.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Renardy, On the domain space for constitutive laws in linear viscoelasticity, Arch. Rat. Mech. Anal.

    Google Scholar 

  26. P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21 (1953), 1271–1280.

    Article  ADS  Google Scholar 

  27. I. M. Rutkevich, The propagation of small perturbations in a viscoelastic fluid, J. Appl. Math. Mech. (1970), 35–50.

    Google Scholar 

  28. P. E. Sobolevskii, Equations of parabolic type in a Banach space, AMS Transl. 49 (1966), 1–62.

    Google Scholar 

  29. V. A. Solonnikov, General boundary value problems for DouglisNirenberg elliptic systems, Proc. Steklov Inst. 92 (1967), 269–339.

    Google Scholar 

  30. V. A. Solonnikov, Estimates of the solutions of the nonstationary linearized system of Navier-Stokes equations, Proc. Steklov Inst. 70 (1964), 213–317.

    Google Scholar 

  31. B. H. Zimm, Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys. 24 (1956), 269–278.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe G. Ciarlet Maurice Roseau

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Renardy, M. (1984). Initial value problems for viscoelastic liquids. In: Ciarlet, P.G., Roseau, M. (eds) Trends and Applications of Pure Mathematics to Mechanics. Lecture Notes in Physics, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12916-2_65

Download citation

  • DOI: https://doi.org/10.1007/3-540-12916-2_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12916-5

  • Online ISBN: 978-3-540-38800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics