Skip to main content

Hamiltonian and non-Hamiltonian models for water waves

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 195))

Abstract

A general theory for determining Hamiltonian model equations from noncanonical perturbation expansions of Hamiltonian systems is applied to the Boussinesq expansion for long, small amplitude waves in shallow water, leading to the Korteweg-de-Vries equation.New Hamiltonian model equations, including a natural “Hamiltonian version” of the KdV equation, are proposed. The method also provides a direct explanation of the complete integrability (soliton property) of the KdV equation. Depth dependence in both the Hamiltonian models and the second order standard perturbation models is discussed as a possible mechanism for wave breaking.

Research supported in part by National Science Foundation Grant NSF MCS 81-00786.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978.

    Book  MATH  Google Scholar 

  2. T.B. Benjamin, “The solitary wave with surface tension”, Quart. Appl. Math. 40 (1982) 231–234.

    Article  MATH  MathSciNet  Google Scholar 

  3. T.B. Benjamin, J.E. Bona and J.J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Phil. Roy. Soc. London A 272 (1972) 47–78.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. T.B. Benjamin and P.J. Olver, “Hamiltonian structure, symmetries and conservation laws for water waves”, J. Fluid Mech. 125 (1982) 137–185.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. J.L. Bona and R. Smith, “A model for the two-way propagation of water waves in a channel,” Math. Proc. Camb. Phil. Soc. 79 (1976) 167–182.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.J.F. Broer, “Approximate equations for long water waves”, Appl. Sci. Res. 31 (1975) 377–395

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon and H.C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York, 1982.

    MATH  Google Scholar 

  8. I.M. Gelfand and I. Ya. Dorfman, “Hamiltonian operators and related algebraic structures”, Func. Anal. Appl. 13 (1979) 13–30.

    MATH  Google Scholar 

  9. J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.

    Book  MATH  Google Scholar 

  10. N. Lebovitz, “Perturbation expansions on perturbed domains”, SIAM Rev. 24 (1982) 381–400.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Lichnerowicz, “Les varietés de Poisson et leurs algebres de Lie Associées” J. Diff. Geom. 12 (1977) 253–300.

    Article  MATH  Google Scholar 

  12. F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys. 19 (1978) 1156–1162.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. J.E. Marsden, T. Ratiu and A. Weinstein, “Semi-direct products and reduction in mechanics,” CPAM preprint # 96, Berkeley, California, 1982.

    Google Scholar 

  14. P.J. Olver, “On the Hamiltonian structure of evolution equations”, Math. Proc. Camb. Phil. Soc. 88 (1980) 71–88.

    Article  MATH  MathSciNet  Google Scholar 

  15. P.J. Olver, “Conservation laws of free boundary problems and the classification of conservation laws for water waves”, Trans. Amer. Math. Soc. 277 (1983) 353–380.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.J. Olver, “Hamiltonian perturbation theory and water waves,” in Fluids and Plasmas: Geometry and Dynamics, ed. J.E. Marsden, Contemporary Mathematics Series, American Mathematical Society, to appear.

    Google Scholar 

  17. H. Segur,“Solitons and the inverse scattering transform”, Topics in Ocean Physics 80 (1982) 235–277.

    Google Scholar 

  18. C.L. Siegel and J.K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, New York, 1971.

    Book  MATH  Google Scholar 

  19. G.B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

    MATH  Google Scholar 

  20. V.E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys. 2 (1968) 190–194.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe G. Ciarlet Maurice Roseau

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Olver, P.J. (1984). Hamiltonian and non-Hamiltonian models for water waves. In: Ciarlet, P.G., Roseau, M. (eds) Trends and Applications of Pure Mathematics to Mechanics. Lecture Notes in Physics, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12916-2_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-12916-2_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12916-5

  • Online ISBN: 978-3-540-38800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics