A new probabilistic model for the study of algorithmic properties of random graph problems

  • Marco Protasi
  • Maurizio Talamo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 158)


Greedy Algorithm Random Graph Chromatic Number Hamiltonian Cycle Hamiltonian Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (AV).
    D. Angluin, L.G. Valiant “Fast probabilistic algorithms for hamiltonian paths and matchings”, J. Comp. Syst. Sci, Vol. 18 (1979)Google Scholar
  2. (B).
    B. Bollobas “Graph theory. An Introductory course” Springer Verlag, New York (1979)Google Scholar
  3. (BE).
    B. Bollobas, P. Erdös “Cliques in random graphs” Math. Proc. Camb. Phil. Soc., Vol. 80 (1976)Google Scholar
  4. (C).
    V.L. Chung “A course in probability theory” Academic Press (1974)Google Scholar
  5. (ER).
    P. Erdös, A. Renyi “On the evolution of random graphs” Publ. Math. Inst. Hungar. Acad. Sci., Vol. 5 (1960)Google Scholar
  6. (GJ).
    M.R. Garey, D.S. Johnson “Computers and intractability. A guide o the theory of NP-completeness', Freeman, San Francisco, 1978).Google Scholar
  7. (GM).
    G. R. Grimmett, C. J. H. Mc Diarmid “On colouring random graphs” Math. Proc. Camb. Phil. Soc. Vol 77, (1975).Google Scholar
  8. (K).
    R. M. Karp “The probabilistic analysis of some combinatorial search algorithms” In J. F. Tranb (ed.) “Algorithms and complexity: New directions and recent results”, Academic Press, New York (1976)Google Scholar
  9. (Ko).
    A.D. Korshunov “Solution of a problem of Erdös and Renyi on Hamiltonian cycles in nonoriented graphs” Soviet. Mat. Doklady, Vol. 17 (1976)Google Scholar
  10. (KS).
    R.M. Karp, M. Sipser “Maximum matchings in sparse random graphs” Proc. 22th Ann. Symp. on Foundations of Computer Science, I EEE Computer Society (1981)Google Scholar
  11. (P).
    L. Posa “Hamiltonian circuits in random graphs” Discr. Math., Vol. 14, (1976)Google Scholar
  12. (PS).
    C. Papadimitriou, D. Steiglitz “Combinatorial optimization. Algorithms and complexity” Prentice Hall (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Marco Protasi
    • 1
  • Maurizio Talamo
    • 2
  1. 1.Istituto di MatematicaUniversità dell'AquilaL'AquilaItaly
  2. 2.IASI-CNRRomaItaly

Personalised recommendations