Space and reversal complexity of probabilistic one-way turing machines

  • Rusins Freivalds
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 158)


Turing Machine Input String Probabilistic Automaton Initial Zone Probabilistic Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bukhstab A.A. Number theory. Ucpedgiz, 1960 (Russian).Google Scholar
  2. 2.
    Freivalds R. Fast computation by probabilistic Turing machines. — Ucenye Zapiski Latviiskogo Gosudarstvennogo Universiteta, v.233, 1975, 201–205 (Russian).Google Scholar
  3. 3.
    Freivalds R. Probabilistic machines can use less running time. — Information Processing '77, IFIP, North-Holland, 1977, 839–842.Google Scholar
  4. 4.
    Freivalds R. Capabilities of various models of probabilistic one-way automata. — Izvestiya VUZ. Matematika, No.5(228), 1981, 26–34 (Russian).Google Scholar
  5. 5.
    Freivalds R. Probabilistic two-way machines. — Lecture Notes in Computer Science, Springer, v.118, 1981, 33–45.Google Scholar
  6. 6.
    Gill J.T. III. Computational complexity of probabilistic Turing machines. — Proc. 6th ACM Symposium on Theory of Computation, 1974, 91–95.Google Scholar
  7. 7.
    Hartmanis J. Tape-reversal bounded Turing machine computations. — Journal of Computer and System Sciences, v.12, No.5, 1968, 117–135.Google Scholar
  8. 8.
    de Leeuw K., Moore E.F., Shannon C.E. and Shapiro N. Computability by probabilistic machines. — Automata Studies, Princeton University Press, 1956, 183–212.Google Scholar
  9. 9.
    Rabin M.O. Probabilistic automata. — Information and Control, v.6, No.3, 1963, 230–245.Google Scholar
  10. 10.
    Stearns R.E., Hartmanis J. and Lewis P.M. II. Hierarchies of memory limited computations. — Proc. IEEE Symp. on Switching Circuit Theory and Logical Design, 1965, 179–190.Google Scholar
  11. 11.
    Trakhtenbrot B.A. Notes on complexity of computation by probabilistic machines. — Research in Mathematical Logic and Theory of Algorithms, Moscow, Comp.Ctr. Acad.Sci. USSR, 1974 (Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Rusins Freivalds
    • 1
  1. 1.Computing CenterLatvian State UniversityRigaUSSR

Personalised recommendations