Laser Physics pp 238-248 | Cite as

Distribution functions in quantum optics

  • R. F. O'Connell
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 182)


Perhaps the simplest way of including quantum mechanics, in various problems in quantum optics, is by use of the classical-quantum-correspondence method, by means of which one replaces quantum-mechanical operators by complex numbers. This is carried out by means of quasi-classical distribution functions and here we address the question of which is the best choice of function from the large selection available. Whereas Glauber's P(α) distribution is useful in many applications, it does not exist as a well-behaved function in many others. In such cases, a more useful function is the generalized P-representation of Drummond and Gardiner. However, based on simplicity and overall applicability, we conclude that Wigner's function also has a claim to be the optimum choice.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).CrossRefGoogle Scholar
  2. 2.
    E. Wigner, Phys.Ŕev. 40, 749 (1932).Google Scholar
  3. 3.
    R. Balescu, Equilibrium and None uilibrium Statistical Mechanics (Wiley-Interscience, New York, 1975).Google Scholar
  4. 4.
    W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).Google Scholar
  5. 5.
    M. Lax in Statistical Physics, Phase Transitions, and Superfluidit, ed. by M. Chretien, E. P. Gross, and S. Deser (Gordon and Breach, New York, 1968).Google Scholar
  6. 6.
    M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass. 1974).Google Scholar
  7. 7.
    H. Haken, Laser Physics, Handbuch der Physik 15, 2c (Springer, Berlin, 1970).Google Scholar
  8. 8.
    H. Haken, Rev. Mod. Phys. 47, 67 (1975).CrossRefGoogle Scholar
  9. 9.
    H. Haken, Synergetics, 2nd-ed. (Springer, New York, 1978).Google Scholar
  10. 10.
    K. Imre, E. Ozizmir, M. Rosenbaum, and P. F. Zweifel, J. Math. Phys. 8, 1097 (1967).CrossRefGoogle Scholar
  11. 11.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon Press, 1981).Google Scholar
  12. 12.
    E. G. D. Cohen and W. Thirring, eds., The Boltzmann Equation Theory and Applications (Springer, New York, 1973)Google Scholar
  13. 13.
    H. Spohn, Rev. Mod. Phys. 53, 569 (1980).CrossRefGoogle Scholar
  14. 14.
    R. Zwanzig, Phys. Rev. 124, 983 (1961); ibid., Physica 30, 1109 (1964); S. Nakajima, Prog. Theor. Fhys. 20, 948 (1958); H. Mori, Prog. Theor. Phys. 33, 423 (1965); I. Prigogine end P. Resibois, Physica 27, 629 (1961).CrossRefGoogle Scholar
  15. 15.
    T R. Barker and D. K. Ferry, Solid St. Electron 23, 531 (1980).CrossRefGoogle Scholar
  16. 16.
    N. G. van Kampen, Stochastic Processes in Physics-and Chemistry (North-Holland, New York, 1981).Google Scholar
  17. 17.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Mass. 1975).Google Scholar
  18. 18.
    E. P. Wigner, Ann. Math. 62, 548 (1955); T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981); R. U. Haq, A. Pandey, and 0. Bohigas, Phys. Rev. Lett. 48, TU86 (1982).Google Scholar
  19. 19.
    G. W. Ford, J. T. Lewis, and J. McConnell, Phys. Rev. A19, 907 (1979); J. McConnell, Rotational Brownian Motion and Dielectric Theory (Academic, New York, 1980).Google Scholar
  20. 20.
    G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches (Springer, New Yorkl, 1974).Google Scholar
  21. 21.
    MK. Itô, Mem. Amer. Mathem. Soc. 4, 51 (1951); R. L. Stratonovich, SIAM J. Control 4, 362 (1966); S. Chaturvedi and C. W. Gardiner, J. Phys. B 14, 1119 (1981), see Appendix.Google Scholar
  22. 22.
    E. P. Wigner in Perspectives in Quantum Theory, ed, W. Yourgrau and A. van der Merwe (Dover, New York, (1981) R. F. Donnell and E. P. Wigner, Phys. Lett. 83A, 145 (1981); R. F. O'Connell,Found. Phys. 13,83 (1983).Google Scholar
  23. 23.
    R. F. Tonnell and E. P. Wigner, Phys. Lett. 85A, 121 (1981).Google Scholar
  24. 24.
    K. Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (1940).Google Scholar
  25. 25.
    J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).Google Scholar
  26. 26.
    W. Weidlich, H. Hisken, and H. Haken, Z. Phys. 186, 85 (1965).CrossRefGoogle Scholar
  27. 27.
    P. D. Drummond and D. F. Walls, J. Phys. A 13,725 (1980); ibid. Phys. Rev. A 23, 2563 (1981).Google Scholar
  28. 28.
    W. H. Louisell and J. H. Marburger, IEEE J. Quantum Electron. 3, 348 (1967).CrossRefGoogle Scholar
  29. 29.
    P. D. Drummond and C. W. Gardiner, J. Phys. A13, 2353 (1980).Google Scholar
  30. 30.
    P. D. Drummond, C. W. Gardiner, and D. F. Walls, Phys. Rev. A24, 914 (1981).Google Scholar
  31. 31.
    D. F. Walls, Nature 280, 451 (1979) reviews this topic.Google Scholar
  32. 32.
    D. F. Walls and G. J. Milburn, in Proceedings of the NATO ASI in Bad Windsheim, West Germany, 1981, ed. by P. Meystre (Plenum, New York, 1982).Google Scholar
  33. 33.
    L. A. Lugiato, F. Casagrande, and L. Pizzuto, Phys. Rev. A26, 3438 (1982).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. F. O'Connell
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton Rouge

Personalised recommendations