Skip to main content

On the analytic structure of chaos in dynamical systems

  • Seminars and Communications
  • Conference paper
  • First Online:
Dynamical System and Chaos

Part of the book series: Lecture Notes in Physics ((LNP,volume 179))

Abstract

A number of new and exciting results on the chaotic properties of dynamical systems have been recently obtained by studying their movable singularities in the complex time plane. New, integrable systems were identified by requiring that their solutions admit only poles. Allowing for logarithmic singularities, it has been possible to distinguish between “strongly” and “weakly” chaotic Hamiltonian systems, while in some cases natural boundaries with self-similar structure have been found. The analysis is direct, widely applicable and is illustrated here on some simple examples.

1982–83: On leave at the Institute for Theoretical Physics, Valckenierstraat 65, 1018 XE, Amsterdam, The Netherlands

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. G. Helleman in Fundamental Problems in Statistical Mechanics, vol. 5, North Holland 1991.

    Google Scholar 

  2. M. V. Berry in Tonics in Nonlinear Dynamics, A.f.P. Conf. Proc., vol. 46, A.I.P. (1978)

    Google Scholar 

  3. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, to appear (1982)

    Google Scholar 

  4. J. Ford in Fundamental Problems in Statistical Mechanics, vol. l3, North Holland 1975.

    Google Scholar 

  5. B. V. Chrikov, Physics Reports 52, 265 (1979).

    Google Scholar 

  6. E. L. Ince, Ordinarv Differential Equations, Dover (1956).

    Google Scholar 

  7. S. Kovalevskaya, Acta Mathematica 14, 81 (1899).

    Google Scholar 

  8. H. T. Davis, Introduction to Nonlinear Diff. and Integral Equations, Dover (1962).

    Google Scholar 

  9. A. S. Fokas and M. J. Ablowitz, J. Math. Phys., to appear (1982).

    Google Scholar 

  10. M. J. Ablowitz, A. Ramani and H. Segur, Lett. al Nuovo Cimento, 23 (9), 333 (1978).

    Google Scholar 

  11. M. J. Ablowitz, A. Ramani and H. Segur, J. Math. Phys. 21(4), 715 and J. Math. Phys. 21(5), 1006 (1980).

    Google Scholar 

  12. M. J, Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM series in Appl. Math. (1982).

    Google Scholar 

  13. H. Segur, Lectures at International School of Physics “Enrico Fermi”, Varenna, Italy (1980).

    Google Scholar 

  14. E. Lorenz, J. Atmos. Sci. 20, 130 (1963).

    Google Scholar 

  15. T. Bountis, H. Segur and F. Vivaldi, Phys. Rev. A, 25, 1257 (1982).

    Google Scholar 

  16. T. Bountis, H. Segur in Mathematical Methods in Hydrodynamics and Related Dynamical Systems, A.I.P. Conf. Proc. 88, A.I.P. (1982).

    Google Scholar 

  17. T. Bountis, AIAA/AAS Astrodynamics Conference Reprint AIAA-82-1443 (1982).

    Google Scholar 

  18. Y. F. Chang and G. Corliss, J. Inst. Paths. Applics. 25, 349 (1980).

    Google Scholar 

  19. M. Tabor and J. Weiss, Phys. Rev. A, 24, 2157 (1981).

    Google Scholar 

  20. Y. F. Chang, M. Tabor, J. Weiss, J. Nth. Phys. 23(4), 531 (1982).

    Google Scholar 

  21. J. Yeiss, in same volume as reference 16.

    Google Scholar 

  22. A. Ramani, B. Dorizzi, B. Grammatikos, Ecole Polytech., Palaiseau, preprint A497.0482 (1982).

    Google Scholar 

  23. B. Dorizzi, B. Grammatikos, A. Ramani, CNET, Issy les Moulineaux, preprint A500.0582 (1982).

    Google Scholar 

  24. M. Hénon, C. Heiles, Astron. J., 69(1), 73 (1964).

    Google Scholar 

  25. G. Contoooulos, Astrophys. J. 138, 1297 (1963); see also Astron. J. 68, 1(1963).

    Google Scholar 

  26. Y. Aizawa, N. Saitô, J. Phys. Soc. Jpn. 32, 1636 (1972).

    Google Scholar 

  27. J. M. Greene, private communication.

    Google Scholar 

  28. L. S. Hall, Lawrence Livermore Lab., preprint UCID-18980 (1981).

    Google Scholar 

  29. B. Grammatikos et.al., Phys. Lett. A, to appear (1982).

    Google Scholar 

  30. H. Yoshida, Astronomy Dept., Tokyo Univ. preprint (1981).

    Google Scholar 

  31. H. Flaschka, Phys. Rev. B 9, 1924 (1974); Progr. Theor. Phys. 51, 703 (1974): see also J. Moser, Adv. Math. 16, 197 (1975).

    Google Scholar 

  32. O. I. Bogoyavlenski, Commun. Math. Phys. 51, 201 (1976); see also B. Kostant, M.I.T. Math. Dept., preprint (1981).

    Google Scholar 

  33. B. Dorizzi et al., “New Integrals of Motion for the Toda System”, preprint (1982).

    Google Scholar 

  34. I. C. Percival, J. M. Greene, Princeton Plasma Physics Lab. preprint PPPL-1744 (1981).

    Google Scholar 

  35. E. T. Whittaker, Analytical Dynamics Chot. III, Dover (1937).

    Google Scholar 

  36. The highest power N, in (4.3), is not known à priori. To help overcome this problem Hall (see ref. 28) numerically studies projections of orbits from which it is often possible to infer the value of N from the number of times x (or y) changes sign over one “period” of the motion.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luis Garrido

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Bountis, T. (1983). On the analytic structure of chaos in dynamical systems. In: Garrido, L. (eds) Dynamical System and Chaos. Lecture Notes in Physics, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12276-1_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-12276-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12276-0

  • Online ISBN: 978-3-540-39594-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics