Hypersonic relaxation in a glass forming KNO3-Ca(NO3)2 mixture

  • L. M. Torell
I. Ionic Liquids and Molten Salts
Part of the Lecture Notes in Physics book series (LNP, volume 172)


Brillouin scattering (GHz) experiments were performed on a viscous 60 % KNO3 - 40 % Ca((NO3)2 mixture (mol. %) in a temperature range of 90-3800 C. Sound velocities for both the transverse and longitudinal waves were measured as well as the absorption. A single relaxation time behaviour was revealed for temperatures > 2000°C. The temperature dependence of the relaxation time was determined in a wide range, >3000°, above the glass transition.


Relaxation Time Sound Velocity Longitudinal Relaxation Time Rayleigh Line Brillouin Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.M. Torell, J. Chem. Phys. 76, 3467 (1982)Google Scholar
  2. 2.
    E. Rhodes, W.E. Smith, and A.R. Ubbelohde, Trans. Far. Soc. 63, 1943 (1967)Google Scholar
  3. 3.
    G.M. Glover and A.J. Matheson, Trans. Far. Soc. 67, 1960 (1971)Google Scholar
  4. 4.
    H. Tweer, N. Laberge, and P.B. Macedo, J. Am. Ceram. Soc. 54, 121 (1971)Google Scholar
  5. 5.
    R.A. Weiler, R. Bose, and P.B. Macedo, J. Chem. Phys. 53, 1258 (1970)Google Scholar
  6. 6.
    P.B. Macedo, J.H. Simmons and W. Haller, Phys. Chem. Glasses 9, 156 (1968)Google Scholar
  7. 7.
    J. Tanke, T.A. Litovitz and P.B. Macedo, J. Am. Ceram. Soc. 51, 158 (1968)Google Scholar
  8. 8.
    P.B. Macedo, J.H. Simmons and W. Haller, Phys. Chem. Glasses 9, 156 (1968)Google Scholar
  9. 9.
    G. Gruber and T.A. Litovitz, J. Chem. Phys. 40, 13 (1964)Google Scholar
  10. 10.
    T.A. Litovitz and C.M. Davis, “Physical Acoustics”, Vol. II A, W.P. Mason, Ed., Academic Press, New York, N.Y. 1965, pp. 281–349Google Scholar
  11. 11.
    R. Aronsson, H.E.G. Knape, and L.M. Torell, J. Chem. Phys. 68, 3794 (1978)Google Scholar
  12. 12.
    R.J. Rao, D.B. Helphrey and C.A. Angell, Phys. Chem. Glasses 14, 26 (1973)Google Scholar
  13. 13.
    A. Dietzel and H.P. Poege,l, Proc. Intern. Glass. Congr. 3rd Venice, 319 (1963)Google Scholar
  14. 14.
    C.A. Angell, J. Phys. Chem. 68, 218 (1964)Google Scholar
  15. 15.
    F.S. Howell, R.A. Bose, P.B. Macedo and C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)Google Scholar
  16. 16.
    C.A. Angell, in “Vibrational Spectroscopy in Molecular Liquids and Solids”, Eds. E.M. Pick and S. Bratos, Plenum Press, 1980, p. 187Google Scholar
  17. 17.
    J.H.R. Clarke and S. Miller, Chem. Phys. Lett. 13, 97 (1972)Google Scholar
  18. 18.
    C.A. Angell and J. Wong, J. Chem. Phys. 51, 4519 (1969)Google Scholar
  19. 19.
    J. Wong, Ph.D. Thesis, Purdue University (1970)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • L. M. Torell
    • 1
  1. 1.Department of PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations