Skip to main content

Flow simulation by discrete vortex method

  • Invited Lectures
  • Conference paper
  • First Online:
Eighth International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 170))

Abstract

Applicability of discrete vortex approximation was tested experimentally for four types of flow conditions; an oscillating airfoil, roll-up of wake vortex layer originated from an oscillating plate, an impulsively started flat plate with an angle-of-attack and a two-dimensional rotating elliptic airfoil. Detailed flow visualization reveals the mechanism of creation, growth and migration of vortices and the comparison with those predicted by discrete vortex method has been done. It is concluded that this numerical simulation method is most usefull to predict global feature of the flow fields and care must be taken not to excessively increase the spacial and time resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker,G.R. (1980) A test of the method of Fink and Soh for following vortex-sheet motion, J.Fluid Mech. vol. 100 pp.209–220

    Google Scholar 

  • Basu,B.C. and Hancock,G.J. (1978) The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow, J Fluid Mech. vol.87 pp.159–178

    Google Scholar 

  • Bearman,P.W. and Graham,J.M.R. (1980) Vortex shedding from bluff bodies in oscillatory flow: A report on Euromech 119, J.Fluid Mech. vo1.99 pp.225–245

    Google Scholar 

  • Bratt,B.A. (1953) Flow patterns in the wake of an oscillating aerofoil, R and M 2773

    Google Scholar 

  • Chorin,A.J. and Bernard,P.S. (1973) Discretization of a vortex sheet with an example of roll-up, J.Comp.Phys. vol.13 pp.423–429

    Google Scholar 

  • Ericsson, L.E. (1979) Karman vortex shedding and the effect of body motion, AIAA J. vol.18 pp.935–944

    Google Scholar 

  • Fink,P.T. and Soh,W.K. (1978) A new approach to roll-up calculation of vortex sheets, Proc.R.Soc.Lond.A. vol.362 pp.195–208

    Google Scholar 

  • Geissler,W. (1978) Nonlinear unsteady potential flow calculation for three-dimensional oscillating wings, AIAA J. vol.16 pp.1168–1174

    Google Scholar 

  • Graham,J.M.R. (1980) The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers, J.Fluid Mech. vo1.97 pp.331–346

    Google Scholar 

  • Huang,M-K and Chow,C-Y (1982) Trapping of a free vortex by Joukowski airfoil, AIAA J. vol.20 pp.292–298

    Google Scholar 

  • Iversen,J.D. (1979) Autorotating flat-plate wings: the effect of the moment of inertia, geometry and Reynolds number, J.Fluid Mech. vol.92 pp.327–348

    Google Scholar 

  • Kaden,H. (1931) Aufwicklung einer unstabilen Unsteigkeitsflach, Ing.Arch. vol.2 pp.149–239

    Google Scholar 

  • Katz,J. (1981) A discrete vortex method for the non-steady separated flow over an airfoil, J.Fluid Mech. vol.102 pp.315–328

    Google Scholar 

  • Kiya,M and Arie,M (1977) A contribution to an inviscid vortex-shedding model for an inclined flat plate in uniform flow, J Fluid M. vo1.82 pp.223–240

    Google Scholar 

  • Koromilas,C.A. and Telionis,D.P. (1980) Unsteady laminar separation: an experimental study, J.Fluid Mech. vol.97 pp.347–384

    Google Scholar 

  • Kuwahara,K. and H.Takami (1973) Numerical studies of two-dimensional vortex motion by a system of point vortices, J.Phys.Soc.Japan vol.34 pp.247–253

    Google Scholar 

  • Kuwahara,K. (1973) Numerical study of flow past an inclined flat plate by an inviscid model, J.Phys.Soc.Japan vol.35 pp.1545–1551

    Google Scholar 

  • Kuwahara,K. (1978) Study of flow past a circular cylinder by an inviscid model, J.Phys.Soc.Japan vol.45 pp.292–297

    Google Scholar 

  • Leonard,A. (1980) Vortex methods for flow simulation, J.Comp.Phys. vol.37 pp.289–335

    Google Scholar 

  • Lugt,H.J. and Ohring,S. (1977) Rotating elliptic cylinders in a viscous fluid at rest or in a parallel stream, J.Fluid Mech. vol.79 pp.127–156

    Google Scholar 

  • Lugt,H.J. (1980) Autorotation of an elliptic cylinder about an axis perpendicular to the flow, J.Fluid Mech. vol.99 pp.817–840

    Google Scholar 

  • McCroskey,W.J. (1977) Some current research in unsteady fluid dynamics-the 1976 Freeman scholar lecture, J.Fluids Engrg. vol.99pp8–38

    Google Scholar 

  • McCroskey,W.J. (1982) Unsteady airfoils, Ann.Rev.Fluid Mech. vol.14 pp.285–311

    Google Scholar 

  • McCroskey,W.J. and Pucci,S.L. (1982) Viscous-inviscid interaction on oscillating airfoil in subsonic flow, AIAA J. vol.20 pp.167–174

    Google Scholar 

  • Moore,D.W. (1974) A numerical study of the rolled-up of a finite vortex sheet, J.Fluid Mech. vol.63 pp.225–2335

    Google Scholar 

  • Mueller,T.J. and Batill,S.F (1982) Experimental studies of separtion on a two-dimensional airfoil at low Reynolds numbers, AIAA J. vol.20 pp.457–463

    Google Scholar 

  • Ono,K.,Kuwahara,K.and Oshima,K. (1980) Numerical analysis of dynamic stall phenomena of an oscillating airfoil by the discrete vortex approximation, 7 Int.Conf.Numeri.Method.Fluid Dyn. Springer-Verlag pp.310–315

    Google Scholar 

  • Oshima,Y. and Oshima,K. (1980) Vortical flow behind an oscillating airfoil, Theo.Appl.Mech. 15 ICTAM pp357–368

    Google Scholar 

  • Pullin,D.I. (1978) The large:scale structure of unsteady self-similar rolled-up vortex sheets, J. Fluid Mech. vol.88 pp.401–430

    Google Scholar 

  • Pullin,D.I. and Perry,A.E. (1980) Some flow visualization experiments on the starting vortex, J.Fluid Mech. vol.97 pp.239–255

    Google Scholar 

  • Pullin,D.I. and Phillips,R.C. (1981) On a generalization of Kaden's problem, J.Fluid Mech. vol.104 pp.45–53

    Google Scholar 

  • Rosenhead,L. (1931) The formation of vortices from a surface of discontinuity, Proc.R.Soc.A. vol.134 pp.170–192

    Google Scholar 

  • Saffman,P.G. and Sheffield,J.S. (1977) Flow over a wing with an attached free vortex, Studies Appl.Math. vol.57 pp.107–117

    Google Scholar 

  • Saffman,P.G. and Baker,G.R. (1979) Vortex interactions, Ann.Rev.Fluid Mech. vol.11 pp.95–122

    Google Scholar 

  • Sarpkaya,T. and Schoaff,R.L. (1979) Inviscid model of two-dimensional vortex shedding by a circular cylinder, AIAA J. vol.17 pp.1193–1200

    Google Scholar 

  • Sears,W.R. (1976) Unsteady motion of airfoils with boundary-layer separation, AIAA J. vol.14 pp.216–220

    Google Scholar 

  • Smith,E.H. (1971) Autorotating wings: an experimental investigation, J.Fluid Mech. vol.50 pp.513–534

    Google Scholar 

  • Sugavanam, A. and Wu,J.C. (1982) Numerical study of separated turbulent flow over airfoils, AIAA J. vol.20 pp.464–470

    Google Scholar 

  • Williams,III,J.C. (1977) Incompressible boundary-layer separation, Ann.Rev.Fluid Mech. vol.9 pp.113–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Krause

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Oshima, K., Oshima, Y. (1982). Flow simulation by discrete vortex method. In: Krause, E. (eds) Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11948-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-11948-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11948-7

  • Online ISBN: 978-3-540-39532-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics