Skip to main content

Mathematical methods in stability theory

  • Conference paper
  • First Online:
Stability of Thermodynamics Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 164))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Reynolds, Phil. Trans. Roy. Soc. A186,123 (1895).

    Google Scholar 

  2. W. Orr, Proc. Roy. Irish Acad., A27, 69 (1907).

    Google Scholar 

  3. J. Serrin, Arch. Rat. Mech. Anal., 3, 1 (1959).

    Google Scholar 

  4. D.D. Joseph, Stability of Fluid Motions, Springer, Berlin, (1976).

    Google Scholar 

  5. A. Lindsted, Mém. Acad., St-Petersbourg, (1882).

    Google Scholar 

  6. H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, 1892, Dover, New York, (1957).

    Google Scholar 

  7. L. Landau and E. Lifschitz, Fluid Mechanics, Pergamon, New York, (1959).

    Google Scholar 

  8. E. Hopf, Comm. Pure Appl. Math., 1, 303 (1948).

    Google Scholar 

  9. L. Gorkov, J.E.T.P., 6, 311 (1958).

    Google Scholar 

  10. W. Malkus and G. Veronis, J. Fluid Mech., 4, 225 (1957).

    Google Scholar 

  11. J.T. Stuart, J. Fluid Mech., 4, 1 (1958).

    Google Scholar 

  12. E. Hopf, Bericht. Math. Phys. Akad. Wiss. Leipzig, XCIV, 1 (1942).

    Google Scholar 

  13. D.H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, vol. 309, Springer, Berlin, (1973).

    Google Scholar 

  14. G. Iooss and D.D. Joseph, Elementary Stability and Bifurcations Theory, Springer Berlin, (1980).

    Google Scholar 

  15. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, (1961).

    Google Scholar 

  16. M. Lyapounov, Comm. Soc. Math. Kharkov (1893), Stability.of Motion (English Translation), Acad. Press., New York, (1966).

    Google Scholar 

  17. A. Movchan, Prikl. Mat. Mekh., 23, 483, (1959).

    Google Scholar 

  18. V.I. Zubov, Methods of Lyapounov and their applications, P. Noordhoff, Groningen, (1964).

    Google Scholar 

  19. W. Koiter, Purpose and Achievements of Research in Elastic Stability, Report n° 363, Lab. of Eng. Mech., Delft, (1968).

    Google Scholar 

  20. A. Pritchard, J. Math. Anal., 4, 78 (1968).

    Google Scholar 

  21. H. Jeffreys, Phil. Mag., 2, 833 (1926).

    Google Scholar 

  22. L. Segel, in Non-Equilibrium Thermodynamics, Variational Techniques and Stability, p. 165, Univ. Chicago Press, Chicago, (1966).

    Google Scholar 

  23. B. Finlayson, The Method of Weighted Residuals and Variational Principle, Acad. Press, New York, (1972).

    Google Scholar 

  24. E. Palm, Ann. Rev. Fluid Mechanics, 7, 30 (1975).

    Google Scholar 

  25. C. Normand, Y. Pomeau and M. Velarde, Rev. Modern Phys., 49, 581 (1977).

    Google Scholar 

  26. F. Busse, Report Progr. in Phys., 12, 1929 (1978).

    Google Scholar 

  27. J.R. Pearson, J. Fluid Mech., 4, 489 (1958).

    Google Scholar 

  28. D.D. Joseph, Arch. Rat. Mech. Anal., 20, 59 (1965).

    Google Scholar 

  29. P. Glansdorff and I. Prigogine, Structure, Stabilité et Fluctuations, Masson, Paris, (1971).

    Google Scholar 

  30. A. Schlater, D. Lortz and F. Busse, J. Fluid Mech., 23, 129 (1965).

    Google Scholar 

  31. L. Landau, C. R. Acad. Sc. URSS, 44, 311 (1944).

    Google Scholar 

  32. I. Stakgold, Soc. Ind. Appl. Math. Rev., 13, 289 (1971).

    Google Scholar 

  33. J. Keller and S. Antman, eds, Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, New York, (1969).

    Google Scholar 

  34. H. Haken, ed., Synergetics, a Workshop, Springer, Berlin, (1977).

    Google Scholar 

  35. H. Swinney and J.P. Gollub, eds, Hydrodynamic Instabilities and Transition to Turbulence, Springer, Berlin, (1981).

    Google Scholar 

  36. C. Bardos and D. Bessis, eds, Bifurcation Phenomena in Mathematical Physics and Related Topics, Nato Advanced Study Institute Series, Reidl, Dordrecht, (1980).

    Google Scholar 

  37. M. Vainberg, Variational Methods for the Study of Non-linear Operators, HoldenDay, San Francisco, (1964).

    Google Scholar 

  38. G. Lebon and G. Perez-Garcia; Bull. Cl. Sciences Acad. Roy., Belgique, 66, 520 (1980).

    Google Scholar 

  39. M. Biot, Variational Principles in Heat Transfer, Oxford Math. Mono., Oxford, (1970).

    Google Scholar 

  40. G. Lebon and J. Lambermont, J. Chem. Phys., 59, 2929 (1973).

    Google Scholar 

  41. G. Lebon, Variattional Principles in Thermomechanics, in C.I.S.M. Courses and Lectures Notes n° 262, Springer, Wien, (1980).

    Google Scholar 

  42. D. Nield, J. Fluid Mech., 19, 341 (1964).

    Google Scholar 

  43. S.H. Davis, J. Fluid Mech., 39, 347 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Casas-Vázquez G. Lebon

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Lebon, G. (1982). Mathematical methods in stability theory. In: Casas-Vázquez, J., Lebon, G. (eds) Stability of Thermodynamics Systems. Lecture Notes in Physics, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11581-1_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-11581-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11581-6

  • Online ISBN: 978-3-540-39328-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics