The numerical study of quantum chromodynamics

  • Julius Kuti
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 160)


A powerful stochastic method is presented for the numerical evaluation of path integrals in quantum mechanics. The method is directly applicable for the detailed numerical study of Quantum Chromodynamics (QCD) with lattice regularization. Important results on non-perturbative physical quantities, like the confining force between a heavy quark-antiquark pair, the critical temperature of thermal quark liberation, or the mass gap for glue-ball excitations are reviewed first, within the pure gauge sector of the theory. The stochastic treatment of the complete fermionic problem is also described.


Wilson Loop Heat Bath String Tension Euclidean Time Gluon Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, seer C. Itzykson and J. B. Zuber, Quantum Field Theory, McBraw-Hill Book Company (1980).Google Scholar
  2. 2.
    D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30, 134 (1973); H. D. Politzer, Phys. Rev. Lett., 30, 1346 (1973).Google Scholar
  3. 3.
    W. Celmaster and R. J. Gonsalves, Phys. Rev. D20, 1420 (1979).Google Scholar
  4. 4.
    For a review, see: J. Ellis, TH-2174-CERN preprint (1981).Google Scholar
  5. 5.
    For a review, see: M. Creutz and B. Freedman, BNL 28588 Brookhaven preprint (1980).Google Scholar
  6. 6.
    R. P. Feynman: Statistical Mechanics, W. A. Benjamin, Inc. (1972).Google Scholar
  7. 7.
    The application of the stochastic method for the numerical study of QCD was suggested by K. G. Wilson in 1978.Google Scholar
  8. 8.
    K. G. Wilson, Phys. Rev. D10, 2445 (1974).Google Scholar
  9. 9.
    The pioneering SU(2) results are found in M. Creutz, Phys. Rev. D21, 2308 (1980); for an important study of spin systems, see: M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42, 1390 (1979); for the first results on the SU(3). string tension, see: M. Creutz, Phys. Rev. Lett. 45, 313 (1981).Google Scholar
  10. 10.
    E. Pietarinen, Nucl. Phys. B190 [FS3], 349 (1981).Google Scholar
  11. 11.
    A. Hasenfratz and P. Hasenfratz, Phys. Lett 93B, 165 (1980).Google Scholar
  12. 12.
    This phase transition and the critical temperature T was found first by L. D. McLerran and B. Svetitsky, Phys. Lett.C 98B, 195 (1981); J. Kuti, J. Polónyi and K. Szlachanyi, Phys. Let. 98B, 199 (1981); later it was further confirmed and substantiated by K. Kajantie, C. Montonen and E. Pietarinen, Z. Physik C9, 253 (1981); J. Engels, F. Karsch, I. Montvay, H. Satz, Phys. Lett. 101B, 89 (1981).Google Scholar
  13. 13.
    I. Montvay and E. Pietarinen, DESY 82-077 preprint (1981).Google Scholar
  14. 14.
    B. Berg, Phys. Lett. 97B, 401 (1980); G. Bahnot and C. Rebbi, Nucl Phys. B180 [FS2], 469 (1980).Google Scholar
  15. 15.
    K. G. Wilson, talk given at the Abingdon meeting on Lattice Gauge Theories (1981).Google Scholar
  16. 16.
    B. Berg and A. Billaire, TH-3230-CERN preprint (1982).Google Scholar
  17. 17.
    C. Kawabata and K. Binder, Solid State Comm. 22, 705 (1977).Google Scholar
  18. 18.
    A. DiGiacomo, G. C. Rossi, Phys. Lett. 100B, 481 (1981); T. Banks, R. Horsley, H. R. Rubinstein and V. Wolf, WIS-81/8 Weizmann Institute preprint (1981).Google Scholar
  19. 19.
    M. A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B165, 45 (1981).Google Scholar
  20. 20.
    R. Brower, J. Kuti, M. Nauenberg, J. Polónyi, preprint in preparation.Google Scholar
  21. 21.
    F. Fucito, E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. B180 [FS2], 369 (1981); D. J. Scalapino and R. L. Sugar, Phys. Rev. Lett. 46, 519 (1981); D. Weingarten and D. Petcher, Phys. Lett. 99B, 333 (1981); R. Blankenbecler, D. J. Scalapino and R. L. Sugar, Phys. Rev. C24, 2278 (1981); D. J. Scalapino and R. L. Sugar, Phys. Rev. B24, 4295 (1981); E. Marinari, G. Parisi and C. Rebbi, Nucl Phys. B190 [FS3], 734 (1981); H. Hamber, Phys. Rev. D24, 951 (1981); A. Duncan and M. Furman, Nucl. Phys. B190 [FS3], 767 (1981); Y. Cohen, S. Elitzur and E. Rabinovici, Hebrew University preprint, 1981; the use of the Wilson hopping parameter K in the fermionic Monte Carlo procedure for the acceleration of the calculation was first suggested by I. O. Stamatescu, MPI-PAE/PTh 60/80 Max Planck Institute preprint (1980); the hopping parameter expansion in the Monte Carlo procedure was first reported by A. Hasenfratz and P. Hasenfratz, Phys. Lett. 104B, 489 (1981).Google Scholar
  22. 22.
    J. E. Hirsch, D. J. Scalapino, R. L. Sugar and R.Blankenbecler, Phys. Rev. Lett. 47, 1628 (1981).Google Scholar
  23. 23.
    For the description of the method, and for further references, see: J. Kuti, NSF-ITP-81-151 Santa Barbara preprint (1981).Google Scholar
  24. 24.
    H. Hamber and G. Parisi, Phys. Rev. Lett. 47, 1792 (1981); E. Marinari, G. Parisi and C. Rebbi, 47, 1795 (1981); D. Weingarten, Indiana University preprint, 1981.Google Scholar
  25. 25.
    I appreciate a very useful discussion with Claudio Rebbi on that matter.Google Scholar
  26. 26.
    During the preparation of the notes a very interesting preprint reached me in which the authors apply the hopping parameter expansion to the fermion Monte Carlo problem in QCD using fairly large lattice volumes: A. Hasenfratz, Z. Kunszt, P. Hasenfratz and C. B. Lang, TH-3220-CERN preprint (1981).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Julius Kuti
    • 1
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraCalifornia 93106
  2. 2.Center for Theoretical Physics Laboratory for Nuclear Science and Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations