Particles and geometry

  • John Archibald Wheeler
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 160)


Black Hole Probability Amplitude Supersymmetric Black Hole Quantum Geometrodynamics Condition Space Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohr, N., and L. Rosenfeld, 1933, “Zur Frage der Messbarkeit der elektromagnetischen Feldgrößen, “Kgl. Danske Videnskab. Sels. Matfyz. Medd. 12, no. 8. The English translation of this paper appears in Selected Papers of Leon Rosenfeld, R. Cohen and J. Stachel, eds., Reidel, Dordrecht, 1979.Google Scholar
  2. Boltzmann, L., 1904, Vorlesungen über die Prinzipien der. Mechanik, Vol. II, Wien. This paper and its intellectual antecedents are discussed in a recent paper by Dr, S. Wagner (1981) whom I thank for his communication on this point.Google Scholar
  3. Christodoulou, D., 1970, “Reversible and irreversible transformations in black-hole physics,” Phys. Rev. Lett. 25, 1596–1597.Google Scholar
  4. Cordero, P., and C. Teitelboim, 1978, “Remarks on supersymmetric black holes,” Phys. Lett. 78B, 80–83.Google Scholar
  5. Cordero, P., post 1978, “On supersymmetric black holes.” Proceedings of the First Chilean Symposium of Theoretical Physics, December 1978, special issue of Contribuciones Cientificas y technologicas (Universidad Tecnica del Estado, Avda. Ecuador 3469, Santiago, Chile), no date, pp.66–74.Google Scholar
  6. Deser, S., and B. Zumino, 1976, “Consistent supergravity,” Phys. Lett. 628, 335–337.Google Scholar
  7. Dirac, P.A.M., 1928a, “The quantum theory of the electron, I,” Proc. Roy. Soc. (London) A113, 610–624.Google Scholar
  8. Dirac, P.A.M., 1928b, “The quantum theory of the electron, II,” Proc. Roy. Soc. (London) A118, 351–361.Google Scholar
  9. Einstein, A., 1913, letter to Ernst Mach dated June 26, 1913, together with other correspondence between Einstein and Mach in F. Herneck, Einstein und sein Weltbild, Der Morgen, Berlin DDR, 1979.Google Scholar
  10. Einstein, A., 1934, Essays in Science, Philosophical Library, New York. Translated from Mein (Weltbild, Querido Verlag, Amsterdam, 1933.Google Scholar
  11. Einstein, A., 1949, “Autobiographical Notes”, in P.A. Schilpp, ed., Albent Einstein: Philosopher-Scientist, Library of Living Philosophers, Evanston, Ill., pp.65–67.Google Scholar
  12. Feynamn, R.P., 1981, “Qualitative behavior of quantum chromodynamics,” report at 3-5 April, 1981 Conference “The Way Ahead,” University of Texas, Austin.Google Scholar
  13. Freedman, D.L., P. Van Nieuwenhuizen and S. Ferrara, 1976, “Progress toward a theory of super gravity,” Phys. Rev. D13, 3214–3218.Google Scholar
  14. Gibbons, G.W. and S.W. Hawking, 1977, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D15, 2752–2757.Google Scholar
  15. Heisenberg, W., 1969, Der Teil und das Ganze. Gespräche im Umbreis der Atomphysik, (Munich), English translation, Physicz and Beyond. Memories of a Life in Science, London, 1971.Google Scholar
  16. Hojman, S., K. Kuchar and C. Teiteboim, 1973, “New approach to general relativity,” Nature Phys. Sci. 245, 97–98Google Scholar
  17. Hojman, S., K. Kuchar and C. Teitelboim, 1976, “Geometrodynamics regained,” Ann. of Phys. 76, 88–135.Google Scholar
  18. Isenberg, J., and J.A. Wheeler, 1979, “Inertia here is fixed by mass-energy there in every W model universe,” in M. Pantaleo and F. deFinis, eds., Refativity, Quanta and Cosmology in the Development of the Scientific Thought of Albett Einstein, Johnson Reprint Corp., New York, Vol. I, pp. 267–293.Google Scholar
  19. Jammer, M., 1974, The Phisiology of Quantum Mechanics, Wiley, New York.Google Scholar
  20. Johnson, K., 1981, “The QCD vacuum,” Report at the 16–21 July 1981 Heisenberg Symposium, Munich.Google Scholar
  21. Kuchar, K., 1973, “Canonical quantization of gravity,” pp. 238–288 in W. Israel, ed., Retativity, Astrophysics and Cosmology, Reidel Dordrecht, Holland.Google Scholar
  22. Kuchar, K., 1974, “Geometrics regained: a LagrangiAn approach,” J. Math. Phys. 15, 708–715.Google Scholar
  23. Peres, A., 1962, “On the Cauchy problem in general relativity, II,” Nuovo Cimento 26,, 53–62. The meaning of this equation is disucssed in Wheeler (1968).Google Scholar
  24. Perry, M.J., S.W. Hawking and G.W. Gibbons, 1978, “Path integrals and indefiniteness of the gravitational action,” Nucl. Phys. 8138, 141–150.Google Scholar
  25. Tabensky, R., and C. Teitelboim, 1977, “The square root of general relativity,” Phyz. Lett. 69B, 453–456.Google Scholar
  26. Teitelboim, C., 1973, “How commutators of constraints reflect spacetime structure,” Ann. of Phyz. 79, 542–557.Google Scholar
  27. Teitelboim, C., 1973, “The Hamiltonian structure of spacetime”, doctoral dissertation, unpublished, Princeton University; available from University Microfilms, Inc., Ann Arbor, Michigan 48106.Google Scholar
  28. Teitelboim, C., 1976, “Surface deformations, spacetime structure and gauge invariance,” in C. Aragone, ed., Relativity, Fields, Strings, and Gravity: Proceedings of the Second Latin American Symposium on Reactivity and Gravitation SILARG 11 heed in Catacaz, December 1975 Universidad Simon Bolivar, Caracas.Google Scholar
  29. Teitelboim, C., 1977, “Supergravity and square roots of constraints,” Phys. Rev. Lett. 38, 1106–1110.Google Scholar
  30. Tomonaga, S., 1946, “On a relativistically invariant formulation of the quantum theory of wave fields,” Prog. Theor. Phys. 11 27–42, reprinted in Schwinger, J., ed., Selected Papers on Quantum Dynamics Dover, New York, 1958.Google Scholar
  31. Wagner, S., 1981, “Ludwig Boltzmann and Einstein's Relativitats-theorem,” contribution to 4 September 1981 Int. Conf. on Ludwig Boltzmann.Google Scholar
  32. Weyl, H., 1949, Philosophy of Mathematics and Nature Science (original German in 1927; revised for English edition; translated by O. Helmer), Princeton University Press, Princeton, N.J., p. 91.Google Scholar
  33. Wheeler, J.A.., 1957, “On the nature of quantum geometrodynamics”, Annals o5 Phyzics, 604–614.Google Scholar
  34. Wheeler, J.A., 1968, “Superspace and quantum geometrodynamics” in C.M. DeWitt and J.A. Wheeler, eds., Battelle Rencontres, Benjamin, New York, pp. 242–307.Google Scholar
  35. Wheeler, J.A., 1978, “The ‘past’ and the ‘delayed choice’ double-slit experiment,” in A.R. Marlow, ed., Mathematical Foundations of Quantum Theory, Academic Press, New York, pp. 9–48.Google Scholar
  36. Wheeler, J.A., 1980, “Beyond the black hole,” in H. Woolf, ed., Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein, Addison-Wesley, Reading, Mass., pp. 341–375.Google Scholar
  37. Wheeler, J.A., 1981, “Delayed-choice experiments and the Bohr-Einstein dialog,” The American Philosophical Society and the Royal Society: Papers Read at a Meeting June 5, 1980, Philadelphia, pp. 9–40. ‘The use of the double quasistellar object (“quasar” red shift z = 1.41) as setting for a delayed-choice experiment is described in figures 5 and 6.Google Scholar
  38. Wootters, W.K., 1980, “The acquisition of information from quantum measurements,” Ph.D. dissertation, University of Texas, Austin; available from University Microfilms, Inc., Ann Arbor, Mich. 48106.Google Scholar
  39. Wootters, W.K., 1981, “Statistical distribution and Hilbert space,” Phys. Rev. D 23, 357.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • John Archibald Wheeler
    • 1
  1. 1.Center for Theoretical Physics Department of PhysicsUniversity of TexasAustinUSA

Personalised recommendations