Lattice gravity or Riemannian structure on piecewise linear spaces

  • J. Cheeger
  • W. Müller
  • R. Schrader
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 160)


Simplicial Complex Riemannian Space Scale Limit Total Curvature Pure Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.Schrader, R.Seiler, D.A.Uhlenbrock, eds.,Proceedings of the 1981 IAMP Conference in Berlin, Lecture Notes in Physics, Springer, Berlin-Heidelberg-New York, to appear.Google Scholar
  2. [2]
    T.Regge, Nuovo Cimento 19,551–571 (1961).Google Scholar
  3. [3]
    J.Fröhlich, Regge calculus and discretized gravitational functional integrals, I.H.E.S. preprint, to appear.Google Scholar
  4. [4]
    G.Velo and A.Wightman, eds.,Constructive Quantum Field Theory, Erice Summer School 1973, Lecture Notes in Physics, Vol.25, Springer, Berlin-Heidelberg-New York, 1973.Google Scholar
  5. [5]
    B.Simon, The P(φ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1973.Google Scholar
  6. [6]
    J.Glimm and A.Jaffe, Quantum Physics, Springer, Berlin-Heidelberg-New York,1981.Google Scholar
  7. [7]
    G.W.Gibbons and S.W.Hawking, Phys.Rev.D15,2752–2756 (1977).Google Scholar
  8. [8]
    W.Israel, W.Israel, eds.,General Relativity, An Einstein Centenary Survey, Cambridge University Press, Cambridge, 1979.Google Scholar
  9. [9]
    S.S.Chern, S.Smale eds.,Global analysis, Proceedings of Symposia in Pure Mathematics Vol.XV, American Mathematical Society, Providence, Rhode Island, 1970.Google Scholar
  10. [10]
    J.A.Wheeler in Relativity, Groups and Topology, eds, C.De Witt and B.De Witt, Gordon and Breach, New York, 1964.Google Scholar
  11. [11]
    N.H.Kuiper, Über. Deutsch.Math. Verein 69,77–88 (1967).Google Scholar
  12. [12]
    T.Banchoff, J.Diff.Geom.1,245–256 (1967).Google Scholar
  13. [13]
    R.Conelly, in Proceedings of the International Congress of Mathematics, Helsinki,1978.Google Scholar
  14. [14]
    N.H.Kuiper, in Chern Symposium 1979, Springer Verlag, New York-Heidelberg-Berlin, 1980.Google Scholar
  15. [15]
    J.Cheeger, Proceedings of the National Academy of Sciences USA,76,No.5,2103–06 (1979).Google Scholar
  16. [16]
    W.Müller, Math.28,233–305 (1978).Google Scholar
  17. [17]
    D.Stone, Indiana Univ.Math.J.28,1–21 (1979).Google Scholar
  18. [18]
    J.Cheeger, in Proc.Symp.Pure Math.,Vol36, R.Osserman, A.Weinstein, eds., Providence, Rhode Island, 1980.Google Scholar
  19. [19]
    J.Cheeger, Spectral geometry of singular riemannian spaces, to appear.Google Scholar
  20. [20]
    I.M.Singer and J.A.Thorpe, Lecture Notes in Elementary Topology and Geometry, Scott, Foresman and Co, Glenview, Ill. 1967.Google Scholar
  21. [21]
    J.A.Wheeler, private communication.Google Scholar
  22. [22]
    J.R.Munkres, Elementary Differential Topology, Princeton University Press, Princeton, N.J.1966.Google Scholar
  23. [23]
    S.S.Chern, J.Math.and mech. 16, 101–118 (1966).Google Scholar
  24. [24]
    L.A.Santaló, Integral Geometry and Geometric Probability, Addison Wesley, London 1976.Google Scholar
  25. [25]
    H.Weyl, Amer.J.Math. 61,461–472 (1939).Google Scholar
  26. [26]
    P.Wintgen, Normal cycle and Integral Curvature for Polyhedra in Riemannian manifolds, Colloquia Mathematica Societatis János Bolyai, Budapest, 1978.Google Scholar
  27. [27]
    J.Cheeger, unpublished notes (1977).Google Scholar
  28. [28]
    K.G.Wilson, Phys.Rev.D10,2445–2459 (1974).Google Scholar
  29. [29]
    F.J.Wegner, J.Math.Phys.12,22–59 (1971).Google Scholar
  30. [30]
    J. Cheeger, A. Karpf, W. Müller, R. Schrader, E. Tränkle, unpublished.Google Scholar
  31. [31]
    D.Ruelle, Statistical Mechanics, Benjamin, New York, 1969Google Scholar
  32. [32]
    K.Osterwalder and R.Schrader, Comm.Math.Phys.31,83–112 (1973;,42,281-305 (1975).Google Scholar
  33. [33]
    A.D. Alexandrov, Die innere Geometrie der konvexen Flächen, Akademie Verlag, Berlin (1955).Google Scholar
  34. [34]
    A.W. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb. 31 (73) 88–103 (1952).Google Scholar
  35. [35]
    A.W. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monographs (1973).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • J. Cheeger
    • 1
  • W. Müller
    • 1
  • R. Schrader
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBúres-sur-YvetteFrance

Personalised recommendations