Stability properties of gravity theories

  • S. Deser
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 160)


We study the stability properties of general relativity with a non-vanishing cosmo logical constant A by means of the energy. First, it is shown that there exists a suitable definition of energy in these models, for all metrics tending asymptotically to any background solution which has a timelike Killing symmetry. It is conserved and has flux integral form. Stability is established for all systems tending asymptotically to anti-De Sitter space when A < 0, using supergravity techniques. Spinorial charges are defined which are also flux integrals and satisfy the global graded anti-De Sitter algebra. The latter then implies. that the energy is always positive. For A > 0, it is shown that small excitations about De Sitter space are stable, provided they occur within the event horizon intrinsic to this space. Outside the horizon an instability arises which signals the onset of Hawking radiation; it is shown to be universal to all systems. Semi-classical stability is also discussed for A > 0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    D. Brill and S. Deser, Ann. Phys. 50 (1968) 548.Google Scholar
  2. 2).
    S. Deser and C. Teitelboim, Phys. Rev. Lett. 39 (1977) 249; M. Grisáru, Phys. Lett. 73B (1978) 207.Google Scholar
  3. 3).
    P. Schoen and S.T. Yau, Comm. Math. Phys. 65 (1979) 45; Phys. Rev. Lett. 43 (1979) 1457.Google Scholar
  4. 4).
    E. Witten, Comm. Math. Phys. (in press).Google Scholar
  5. 5).
    G.W. Gibbons and S.W. Hawking, Phys. Rev. D10 (1977) 2738.Google Scholar
  6. 6).
    S. Coleman, Phys. Rev. D15 (1977) 2929; S. Coleman and C.G. Callan, Phys. Rev. D16 (1977) 1762.Google Scholar
  7. 7).
    M.J. Perry in Superspace and Supergravity, eds S.W. Hawking and M. Rocek (Cambridge 1981); D. Gross, M.J. Perry and L. Yaffe, Princeton Univ. preprint (1981).Google Scholar
  8. 8).
    E. Witten, Princeton Univ. preprint (1981).Google Scholar
  9. 9).
    S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time, (Cambridge, 1973).Google Scholar
  10. 10).
    P.K. Townsend, Phys. Rev. D15 (1977) 2802.Google Scholar
  11. 11).
    S. Deser and B. Zumino, Phys. Rev. Lett. 38 (1977) 1433.Google Scholar
  12. 12).
    R. Arnowitt, S. Deser and C.W. Misner, Phys. Rev. 116 (1959) 1322; 117 (1960) 1595 and in Gravitation: an introduction to current research, ed. L. Witten (Wiley, New York, 1962).Google Scholar
  13. 13).
    H. Nariai and T. Kimura, Progr. Theor. Phys. 28 (1962) 529.Google Scholar
  14. 14).
    D. Brill and S. Deser, Comm. Math. Phys. 32 (1973) 291.Google Scholar
  15. 15).
    G.W. Gibbons and M.J. Perry, Proc. Roy. Soc. A358 (1978) 467.Google Scholar
  16. 16).
    P. Schoen and S.T. Yau, Phys. Rev. Lett. 42 (1979) 547.Google Scholar
  17. 17).
    F. Gürsey and T.D. Lee, Proc. Nat. Acad. Sci. 49 (1963) 179.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. Deser
    • 1
  1. 1.CERN, Theory DivisionGeneva 23Switzerland

Personalised recommendations