On effective computations of non-deterministic schemes

  • Axel Poigné
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 137)


Formal Computation Computation Sequence Left Adjoint Forgetful Functor Denotational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ADJ-group: A junction between computer science and category theory. IBM research report RC-4526, 1973Google Scholar
  2. [2]
    ADJ-group: Some fundamentals of order algebraic semantics. MFCS'76, LNCS 45, 1976Google Scholar
  3. [3]
    Arnold, A., Nivat, M.: Metric interpretations of infinite trees and semantics of non deterministic programs. Techn. Rep. Lille 1978Google Scholar
  4. [4]
    Arnold, A., Nivat, M.: Formal computations of non deterministic recursive program schemes. Math. Syst. Th. 13, 1980Google Scholar
  5. [5]
    Beck, J.: Distributive laws. Lect. Notes Math. 80, 1969Google Scholar
  6. [6]
    Dubuc, E.: Kan extensions in enriched category theory. Lect. Notes Math. 145, 1970Google Scholar
  7. [7]
    Hennessy, M.C.B., Plotkin, G.: Full abstraction of a simple parallel programming language. MFCS'79, LNCS 74, 1979Google Scholar
  8. [8]
    Hennessy, M.C.B., Ashcroft, E.A.: The semantics of non-determinism. 3rd ICALP, Edinburgh 1976Google Scholar
  9. [9]
    Huwig, H., Poigné, A.: Continuous and non-deterministic completions of algebras. 3rd Hungarian Comp. Sci. Conf., Budapest 1981Google Scholar
  10. [10]
    MacLane, S.: Kategorien. Berlin-Heidelberg-New-York 1972Google Scholar
  11. [11]
    Manes, E.G.: Algebraic Theories. Berlin-Heidelberg-New-York 1976Google Scholar
  12. [12]
    Meseguer, J.: On order-complete universal algebra and enriched functorial semantics. FCT')), LNCS 56, Poznan 1977Google Scholar
  13. [13]
    Meseguer, J.: Order completion monads. Math. Dpt. UCLA, Berkeley, 1979Google Scholar
  14. [14]
    Nivat, M.: Non deterministic programs: an algebraic overview. Lab. Informatique Theorique et Programmation, Paris 1980Google Scholar
  15. [15]
    Poigné, A.: Using least fixed points to characterize formal computations of non-deterministic equations. Proc. Conf. Formalization of programming concepts. LNCS 107, Peniscola 1981Google Scholar
  16. [16]
    Poigné, A.: An order semantics for non-deterministic program schemes. 11. GI-Jahrestagung, Fachber. Informatik 50, 1981Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Axel Poigné
    • 1
  1. 1.Informatik IIUniversität DortmundDortmund 50

Personalised recommendations