Skip to main content

Structural, elastic, and dynamic properties of swollen polymer networks

  • Conference paper
  • First Online:
Polymer Networks

Part of the book series: Advances in Polymer Science ((POLYMER,volume 44))

Abstract

This article reviews some recent developments in the physics of gels, due to both new methods of synthesis and modern techniques for the study of microscopic properties of gels. The review consists of four major sections. In the first section, some of the recent methods of synthesis allowing to prepare labelled networks are described.

The second section is concerned with the structural properties of networks. A critical discussion of both classical and scaling theories in the light of small-angle neutron scattering data is presented. In the their section, scaling relations for the elastic moduli of networks swollen in good solvents are discussed. The fourth section deals with the dynamic properties of swollen networks with special emphasis on inelastic light-scattering experiments.

The conclusion of this review stresses the important progress made in the understanding of the static and dynamic properties of swollen networks and describes possible future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a3 :

size of the site; volume of the monomer; volume of the chain link

a1 :

diluent activity

b:

radius of a spherical gel sample

c:

polymer concentration expressed in g cm−3

ce :

polymer concentration in a network at swelling equilibrium, expressed in g cm−3

c*:

cross-over concentration between dilute and semi-dilute regimes

f:

functionality of the crosslinks

\(\tilde f\) :

effective frictional coefficient per monomer

f :

driving force per unit volume

f m :

force exerted on a monomer

g:

number of links in a blob

g(r):

spatial pair-correlation function between monomers

h:

volume fraction of polymer in the reference state

is :

photocurrent due to the polarized scattered light

kB :

Boltzmann constant

ℓ:

exponent in the scaling form of the elastic free energy

m*:

apparent mass of the monomer immersed in a solvent

n:

total number of neighbours of a given crosslink

nc :

number of statistical units in a Gaussian subchain

p:

exponent of the scaling law ξ (Φ)

q:

scattering wave vector (transfer momentum)

r:

modulus of the vector position

s:

shear deformation

sd :

sedimentation coefficient

t:

time

tp :

number of topological neighbours of a given crosslink

u:

1/2 − χ

u′:

interaction parameter between blobs

u*:

effective interaction parameter in a semi-dilute regime

u(r, t):

displacement fluctuation of the polymer network from its equilibrium position at point r and time t

\(\underline {\dot u}\) (r, t):

displacement velocity

\(\dot u_m\) :

drift velocity of a monomer

uq(t):

longitudinal component of u(r, t) with wave vector q

\(\dot u_s\) :

velocity of the solvent

v1 :

molecular volume of the solvent

xs, xk :

exponents of the scaling laws as a

xD :

function of the polymer concentration for sedimentation, permeability, and diffusion coefficients, respectively

A:

background of c(t)

A0 :

numerical constant in the expression of the photocurrent due to the polarized light scattered

B:

prefactor in the scaling form of the elastic free energy

c(t):

time autocorrelation function of the photocurrent

D:

diffusion coefficient

E:

Young modulus

Eθ(t):

scattered electric field at an angle θ

F′el :

elastic free energy density (per unit volume of the gel)

F″el :

elastic free energy density (per site)

G:

total Gibbs energy

G′:

Gibbs energy density (per unit volume of the solution)

G″:

Gibbs energy density (per site)

G″dil :

Gibbs energy density of mixing (per site)

G′(s) :

Gibbs energy density (per unit volume) of a gel under shear deformation

I0 :

incident light intensity

K:

compressional modulus

Kel :

inverse of the elastic contribution to the compressional modulus arising from permanent linking of the chains

Kgel :

compressional modulus of a gel

Kp :

permeability coefficient

Ksol :

compressional modulus of a solution (at zero frequency)

M:

longitudinal modulus

Mn :

number average molecular weight

Mw :

weight average molecular weight

N:

polymerization index

N′:

N/g

P:

pressure

R:

end-to-end distance of a chain

R0 :

unperturbed end-to-end distance of a chain

Rg :

radius of gyration of a chain

Rg0 :

radius of gyration of a network chain in the reference state

Rg‖ :

radius of gyration of a network chain parallel to the stretching

Rg⊥ :

radius of gyration of a network chain perpendicular to the stretching

Rgi :

radius of gyration of an elastic chain for unstretched network

〈R2d〉:

mean-square end-to-end distance of a network chain in bulk

〈R 20s 〉:

mean-square end-to-end distance of a network chain in the reference state

〈R 2e 〉:

mean-square end-to-end distance of a network chain in the swollen state

RF :

end-to-end distance of a single chain in a good solvent

S(q):

scattering function

T:

temperature

TR :

lifetime of physical entanglements

δ:

numerical constant characteristic of chain packing in the swollen network

ε:

dielectric constant

η s :

viscosity of solvent

θ:

scattering angle

ϰ:

correction term in the expression of S(q) for semi-dilute solutions in a good solvent

λ:

deformation ratio

λ i :

wavelength of the light in the scattering medium

μ:

shear modulus

μ i :

chemical potential of the solvent in the solution or in the gel

μ 10 :

chemical potential of the pure solvent

ξ:

screening length

π:

osmotic pressure

ϱ:

number density of monomers

σ:

compressional stress

σ s :

shear stress

τ:

characteristic swelling time of the network

ω:

circular frequency

Φ:

volume fraction of polymer

Φ*:

cross-over volume fraction of polymer between dilute and semi-dilute regimes

Φ 0 :

volume fraction of polymer in the reference state

Φ c :

volume fraction of polymer in the solution prior to crosslinking

Φ e :

equilibrium volume fraction of polymer in a swollen network

χ:

Flory-Huggins interaction parameter

χ 0 :

osmotic compressibility

CGD:

classical gradient diffusion

PDMS:

polydimethylsiloxane

PS:

polystyrene

QELS:

quasi-elastic light scattering

SANS:

small-angle neutron scattering

References

  1. Dušek, K., Prins, W.: Adv. Polym. Sci. 6, 1 (1969)

    Google Scholar 

  2. Dušek, K.: J. Polym. Sci. C-16, 1289 (1967)

    Google Scholar 

  3. Flory, P. J.: Principles of polymer chemistry, Cornell University Press, Ithaca (N.Y.) 1953

    Google Scholar 

  4. Seidl, J., et al.: Adv. Polym. Sci. 5, 113 (1967)

    CAS  Google Scholar 

  5. Chen, R. Y. S., Yu, C. U., Mark, J. E.: Macromolecules 6, 746 (1973)

    Article  CAS  Google Scholar 

  6. Walsh, D. J., Allen, G., Ballard, G.: Polymer 15, 366 (1974)

    Article  CAS  Google Scholar 

  7. Herz, J. E., Belkebir-Mrani, A., Rempp, P.: Europ. Polym. J. 9, 1165 (1973)

    Article  CAS  Google Scholar 

  8. Valles, E. M., Macosco, C. W.: Macromolecules 12, 521 (1979)

    Article  CAS  Google Scholar 

  9. Herz, J., Rempp, P., Borchard, W.: Adv. Polym. Sci. 26, 105 (1978) and references therein

    CAS  Google Scholar 

  10. Rempp, P., Herz, J.: Angew. Makromol. Chem. 76–77, 373 (1979) and references therein

    Google Scholar 

  11. Szwarc, M.: Carbanions, living polymers and electron transfer processes, Intersci. Publ. J. Wiley, New York 1968

    Google Scholar 

  12. Hopkins, W., Peters, R. H., Stepto, R. F. T.: Polymer 15, 315 (1974)

    Article  CAS  Google Scholar 

  13. Allen, G., Egerton, P. L., Walsh, D. J.: Polymer 17, 65 (1976)

    Article  CAS  Google Scholar 

  14. Duplessix, R.: Thesis, Université Louis Pasteur, Strasbourg (1975)

    Google Scholar 

  15. Lutz, P.: Thesis, Université Louis Pasteur, Strasbourg (1976)

    Google Scholar 

  16. Benoit, H. et al.: J. Polym. Sci., Polym. Phys. Ed. 14, 2119 (1976)

    Article  CAS  Google Scholar 

  17. Lutz, P. et al.: Brit. Polym. J. 9, 151 (1977)

    Article  CAS  Google Scholar 

  18. Bastide, J.: Thesis, Université Louis Pasteur, Strasbourg (1978)

    Google Scholar 

  19. Bastide, J., Picot, C., Candau, S.: J. Polym. Sci., Polym. Phys. Ed. 17, 1441 (1979)

    Article  CAS  Google Scholar 

  20. Dušek, K., Vojta, V.: Brit. Polym. J. 9, 164 (1977)

    Article  Google Scholar 

  21. Jacobson, H., Stockmayer, W. H.: J. Chem. Phys. 18, 1600 (1950)

    Article  CAS  Google Scholar 

  22. De Gennes, P. G.: Scaling concepts in polymer physics, Cornell University Press, Ithaca (N.Y.) 1979

    Google Scholar 

  23. Domb, C.: Adv. Chem. Phys. 15, 229 (1969)

    Article  Google Scholar 

  24. Mc Kenzie, D. S.: Phys. Rev. 27 C, 2 (1976)

    Google Scholar 

  25. Wall, F. T., Windwer, S., Gans, P. J.: Monte Carlo methods applied to configurations of flexible polymer molecules, in: Methods of Computational Physics, Vol. 1, Academic Press, New York 1963

    Google Scholar 

  26. Fisher, M. E.: J. Chem. Phys. 44, 616 (1966)

    Article  CAS  Google Scholar 

  27. Fisher, M. E., Burford, R. J.: Phys. Rev. 156, 583 (1967)

    Article  CAS  Google Scholar 

  28. Mc Kenzie, D., Moore, M.: J. Phys. A 4, 82 (1971)

    Google Scholar 

  29. Daoud, M. et al.: Macromolecules 8, 804 (1975)

    Article  CAS  Google Scholar 

  30. De Gennes, P. G.: Phys. Lett. A 38, 339 (1972)

    Google Scholar 

  31. Emery, V.: Phys. Rev. B 11, 239 (1975)

    Google Scholar 

  32. Jasnow, D., Fisher, M.: Phys. Rev. B 13, 1112 (1976)

    Google Scholar 

  33. Le Guillou, J. C., Zinn-Justin, J.: Phys. Rev. Lett. 95, 39 (1977)

    Google Scholar 

  34. Edwards, S. F.: Proc. Phys. Soc. 88, 265 (1966)

    Article  CAS  Google Scholar 

  35. Des Cloiseaux, J.: J. Phys. (Paris) 36, 281 (1975)

    Google Scholar 

  36. Bastide, J., Candau, S., Leibler, L.: Macromolecules 14, 719 (1980)

    Article  Google Scholar 

  37. Joanny, J. F.: Thesis, Université Pierre et Marie Curie, Paris (1978)

    Google Scholar 

  38. Flory, P. J.: Proc. R. Soc. London, Ser. A 351, 1666 (1976)

    Google Scholar 

  39. James, H. M.: J. Chem. Phys. 15, 651 (1947)

    Article  CAS  Google Scholar 

  40. James, H. M., Guth, E.: J. Chem. Phys. 15, 669 (1947); 21, 1039 (1953)

    Article  CAS  Google Scholar 

  41. Guth, E.: J. Polym. Sci., C 12, 89 (1966)

    Google Scholar 

  42. Hermans, J. J.: Trans. Faraday Soc. 43, 591 (1947); J. Polym. Sci. 59, 191 (1962); J. Colloid Sci. 1, 235 (1946)

    Article  CAS  Google Scholar 

  43. Wall, F. T.: J. Chem. Phys. 11, 527 (1943)

    Article  CAS  Google Scholar 

  44. Wall, F. T., Flory, P. J.: J. Chem. Phys. 19, 1435 (1951)

    Article  CAS  Google Scholar 

  45. Flory, P. J.: J. Chem. Phys. 66, 5720 (1977)

    Article  CAS  Google Scholar 

  46. Flory, P. J.: Macromolecules 12, 119 (1979)

    Article  CAS  Google Scholar 

  47. Green, M. S., Tobolsky, A. V.: J. Chem. Phys. 14, 80 (1946)

    Article  CAS  Google Scholar 

  48. Brochard, F.: J. Phys. (Paris) 40, 1049 (1979)

    CAS  Google Scholar 

  49. Levy, S.: Thesis, Université Louis Pasteur, Strasbourg (1964)

    Google Scholar 

  50. Edwards, S. F.: Proc. Phys. Soc. 91, 513 (1967); J. Phys. A 1, 15 (1968)

    Article  CAS  Google Scholar 

  51. Deam, R. T., Edwards, S. F.: Phil. Trans. R. Soc. London, Ser. A 280, 1296 (1976)

    Google Scholar 

  52. Pearson, D. S.: Macromolecules 10, 696 (1977)

    Article  CAS  Google Scholar 

  53. Bastide, J. et al.: Annual report of the Institut Laue-Langevin, p. 371, 1980. A more detailed paper has been submitted for publication to Macromolecules

    Google Scholar 

  54. Beltzung, M. et al.: Proc. 27th Internat. Symposium on Macromolecules, Strasbourg, 1981, p. 728

    Google Scholar 

  55. Lutz, P. et al.: Brit. Polym. J. 9, 151 (1977)

    Article  CAS  Google Scholar 

  56. Froelich, D. et al.: Macromolecules 5, 100 (1972)

    Article  CAS  Google Scholar 

  57. Van de Kraats, E. J.: Thesis, TH Delft (1967)

    Google Scholar 

  58. In ref. 16, the value Rg=67 Å was erroneously reported for the same PS network. Repeated careful experiments have led to the value 58 Å quoted in this paper

    Google Scholar 

  59. Richards, R. W., Maconnachie, A.: Annual report of the Institut Laue-Langevin, p. 380, 1980

    Google Scholar 

  60. Unpublished preliminary results of neutron scattering performed on PDMS networks swollen in cyclohexane seem to support also this conclusion (Beltzung, private communication)

    Google Scholar 

  61. Bastide, J., Picot, C., Candau, S.: J. Macromol. Sci., Phys., B 19, 13 (1981)

    Google Scholar 

  62. Farnoux, B.: Thesis, Université Louis Pasteur, Strasbourg. Ann. Phys. 1, 73 (1976)

    CAS  Google Scholar 

  63. Farnoux, B. et al.: J. Phys. Lett. 36, L-35 (1975)

    Google Scholar 

  64. Bastide, J., Picot, C.: Unpublished data

    Google Scholar 

  65. Geissler, E., Hecht, A. M., Duplessix, R.: J. Polym. Sci., submitted for publication

    Google Scholar 

  66. Candau, S. J. et al.: J. Chem. Phys. 70, 4694 (1979)

    Article  CAS  Google Scholar 

  67. Wun, K. L., Prins, W.: J. Polym. Sci. C 12, 533 (1974)

    Google Scholar 

  68. Cotton, J. P. et al.: J. Polym. Sci., Polym. Symp. 42, 981 (1973)

    Article  Google Scholar 

  69. Candau, F., Strazielle, C., Benoit, H.: Eur. Polym. J. 12, 95 (1976)

    Article  CAS  Google Scholar 

  70. Ferry, J. D.: Macromolecules 13, 1719 (1981)

    Google Scholar 

  71. A good fit of the osmotic pressure data to the Φ9/4 law has been found for the following systems: poly(vinyl acetate)-toluene (Vink, H.: Eur. Polym. J. 10, 149 (1973)) PDMS-cyclohexane (Kuwahara, N., Okazawa, T., Kaneko, M.: J. Polym. Sci. 23, 543 (1968), poly-isobutylene-chlorobenzene at 40°C (Leonard, J., Daoust, H.: J. Polym. Sci. 57, 53 (1962))

    Article  Google Scholar 

  72. Landau, L., Lifschitz, E.: Theory of elasticity, Pergamon Press London 1970

    Google Scholar 

  73. See, for instance: — Treloar, L. R. G.: The Physics of rubber elasticity, Clarendon Press, Oxford 1949 — Ward, J. M.: Structure and properties of oriented polymers, Applied Science Publishers, London 1975 — Arridge, R. G. C.: Mechanics of polymers, Clarendon Press, Oxford 1975

    Google Scholar 

  74. Tanaka, T., Fillmore, D.: J. Chem. Phys. 70, 1214 (1971)

    Article  Google Scholar 

  75. Candau, S., Peters, A., Herz, J.: Polymer, in press

    Google Scholar 

  76. Bacri, J. C., Dumas, J., Levelut, A.: J. Phys. Lett. 40, L 231 (1979)

    Google Scholar 

  77. Zrinyi, M., Horkay, F.: J. Polym. Sci., in press

    Google Scholar 

  78. Nagy, M., Horkay, F.: Acta Chim. Acad. Sci. Hung. 104, 49 (1980)

    CAS  Google Scholar 

  79. Tanaka, T., Hocker, L., Benedek, G. B.: J. Chem. Phys. 59, 5151 (1973)

    Article  CAS  Google Scholar 

  80. Hecht, A. M., Geissler, E.: J. Phys. (Paris) 39, 631 (1978)

    CAS  Google Scholar 

  81. Munch, J. P. et al.: J. Phys. (Paris) 38, 971 (1977)

    CAS  Google Scholar 

  82. Belkebir-Mrani, A.: Ph. D. Thesis, Université Louis Pasteur, Strasbourg (1976) Beinert, G. et al.: Disc. Faraday Soc. 57, 27 (1974)

    Google Scholar 

  83. Bristow, G. M.: J. Appl. Polym. Sci. 9, 1571 (1965)

    Article  CAS  Google Scholar 

  84. Bristow, G. M.: J. Appl. Polym. Sci. 9, 495 (1965)

    Article  CAS  Google Scholar 

  85. Cohen, R. E. et al.: Macromolecules 10, 663 (1977)

    Article  CAS  Google Scholar 

  86. Macret: Thesis, Université Louis Pasteur, Strasbourg (1980)

    Google Scholar 

  87. Zrinyi, M., Horkay, F.: Polym. Bull. 3, 665 (1980)

    Article  CAS  Google Scholar 

  88. Zrinyi, M., Horkay, F.: Polym. Bull. 4, 361 (1981)

    Google Scholar 

  89. The log-log plots of the shear modulus versus the equilibrium volume fraction of the polymer for most of the systems quoted above are presented in ref. 88

    Google Scholar 

  90. Vink, H.: Eur. Polym. J. 10, 149 (1973)

    Article  Google Scholar 

  91. Hert, M.: Thesis, Université Louis Pasteur, Strasbourg (1974)

    Google Scholar 

  92. Zrinyi, M., Horkay, F.: J. Polym. Sci., in press

    Google Scholar 

  93. Benoit, H., Picot, C.: Pure Appl. Chem. 12, 545 (1966); see also refs. 29 and 62

    Article  CAS  Google Scholar 

  94. Mc Adam, J. D. G., King, T. A., Knox, A.: J. Chem. Phys. Lett. 26, 64 (1974)

    Article  CAS  Google Scholar 

  95. Munch, J. P. et al.: J. Phys. (Paris) Lett. 35, L 239 (1974)

    Google Scholar 

  96. Adam, M., Delsanti, M., Jannink, G.: J. Phys. (Paris) Lett. L 37, 53 (1976)

    Google Scholar 

  97. Adam, M., Delsanti, M.: Macromolecules 10, 1229 (1977)

    Article  CAS  Google Scholar 

  98. Ref. 22, p. 209

    Google Scholar 

  99. See, for instance, Ref. 3, p. 304

    Google Scholar 

  100. Wiegel, F. W., Mijnlieff, P. F.: Physica 85 A, 207 (1976)

    Google Scholar 

  101. Mijnlieff, P. F., Jasper, W. J. M.: Trans. Faraday Soc. 67, 1837 (1971)

    Article  CAS  Google Scholar 

  102. Brochard, F., de Gennes, P. G.: Macromolecules 10, 1157 (1977)

    Article  CAS  Google Scholar 

  103. Destor, C., Rondelez, F.: J. Polym. Sci., Polym. Lett. 17, 527 (1979)

    Article  CAS  Google Scholar 

  104. Pouyet, G., Dayantis, J.: Macromolecules 12, 293 (1979)

    Article  CAS  Google Scholar 

  105. Nystrom, B., Porsch, B., Sundelof, L. O.: Eur. Polym. J. 13, 683 (1977)

    Article  CAS  Google Scholar 

  106. Roots, J., Nystrom, B., Sundelof, L. O.: Polymer 20, 337 (1979)

    Article  CAS  Google Scholar 

  107. Ref. 22, p. 120

    Google Scholar 

  108. Weill, G., Des Cloiseaux, J.: J. Phys. (Paris) 40, 99 (1979)

    CAS  Google Scholar 

  109. Akcasu, A. Z., Han, C. C.: Macromolecules 12, 276 (1979)

    Article  CAS  Google Scholar 

  110. Pouyet, G. et al.: Macromolecules 13, 176 (1980)

    Article  CAS  Google Scholar 

  111. Weiss, N., Silberberg, A.: Brit. Polym. J. 9, 144 (1977)

    Article  CAS  Google Scholar 

  112. White, M. L.: J. Phys. Chem. 64, 1563 (1960)

    Article  CAS  Google Scholar 

  113. De Gennes, P. G.: Macromolecules 9, 587–594 (1976)

    Article  Google Scholar 

  114. Cummins, H. Z., Pike, E. R.: Photon correlation and light beating spectroscopy, Plenum Press, New York 1974

    Google Scholar 

  115. Munch, J. P. et al.: J. Phys. (Paris) 38, 1499 (1977)

    CAS  Google Scholar 

  116. Hecht, A. M., Geissler, E.: J. Phys. (Paris) 39, 631 (1978)

    CAS  Google Scholar 

  117. Geissler, E., Hecht, A. M.: J. Phys. (Paris) Lett. 40, L 173 (1979)

    Google Scholar 

  118. Munch, J. P. et al.: J. Polym. Sci. Polym. Phys. Ed. 14, 1097 (1976)

    Article  CAS  Google Scholar 

  119. Munch, J. P., Candau, S., Hild, G.: J. Polym. Sci. Polym. Phys. Ed. 15, 11 (1977)

    Article  CAS  Google Scholar 

  120. Daoud, M., Jannink, G.: J. Phys. (Paris) Lett. 41, L 217 (1980)

    Google Scholar 

  121. Adam, M., Delsanti, M.: J. Phys. (Paris) 41, 713 (1980)

    CAS  Google Scholar 

  122. Kubo, R.: J. Phys. Soc. Japan 12, 570 (1957)

    Article  Google Scholar 

  123. Geissler, E., Hecht, A. M.: to be published

    Google Scholar 

  124. Loyd, L.: PH Monographs on physical biochemistry optical methods in ultracentrifugation, electrophoresis and diffusion with a guide to the interpretation of records; Clarendon Press, Oxford 1974

    Google Scholar 

  125. Adam, M., Delsanti, M., Pouyet, G.: J. Phys. Lett. (Paris) 40, L 435 (1979)

    Google Scholar 

  126. Roots, J., Nystrom, B.: Macromolecules 13, 1595 (1980)

    Article  CAS  Google Scholar 

  127. Bastide, J., Picot, C.: C.R.M., Strasbourg, private communication

    Google Scholar 

  128. Richards, R. W., Maconnachie, A.: Strathclyde University, Imperial College, private communication

    Google Scholar 

  129. Tanaka, T.: Phys. Rev. Lett. 40, 820 (1978)

    Article  CAS  Google Scholar 

  130. Tanaka, T., Ishiwata, S., Ishimoto, C.: Phys. Rev. Lett. 38, 771 (1977)

    Article  CAS  Google Scholar 

  131. Tanaka, T.: Phys. Rev. A 17, 763 (1978)

    Google Scholar 

  132. Tanaka, T.: Polymer 20, 1404 (1979)

    Article  CAS  Google Scholar 

  133. Candau, S., Munch, J. P., Hild, G.: J. Phys. 41, 1031 (1980)

    CAS  Google Scholar 

  134. Tanaka, T.: Sci. American 244, 124 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karel Dušek

Additional information

We dedicate this review to Prof. Manfred Gordon on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Candau, S., Bastide, J., Delsanti, M. (1982). Structural, elastic, and dynamic properties of swollen polymer networks. In: Dušek, K. (eds) Polymer Networks. Advances in Polymer Science, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11471-8_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-11471-8_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11471-0

  • Online ISBN: 978-3-540-39086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics